Exam Style Questions

Similar Shapes: Area/Volume

Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser
You may use tracing paper if needed

Guidance

1. Read each question carefully before you begin answering it.
2. Don't spend too long on one question.
3. Attempt every question.
4. Check your answers seem right.
5. Always show your workings

Revision for this topic

www.corbettmaths.com/contents

Video 293a
Video 293b

© Corbettmaths 2015
1. Below are two similar triangles.

The area of triangle A is 20cm²
Work out the area of triangle B.

..........................cm²
(2)

2. Below are two similar pentagonal prisms.

The volume of prism A is 15cm³
Work out the volume of prism B.

..........................cm³
(2)
3. Below are two similar parallelograms.

![Parallelogram A and B](image)

The area of parallelogram A is 28cm²

Work out the area of parallelogram B.

\[\text{Area of parallelogram B} = \text{Area of parallelogram A} \times \left(\frac{\text{Base of B}}{\text{Base of A}} \right)^2\]

\[= 28 \times \left(\frac{6}{4} \right)^2 = 28 \times \frac{36}{16} = 42\text{cm}^2\]

4. Shown below are two mathematically similar shapes.

![Shape A and B](image)

The area of shape B is 150cm²

Work out the area of shape A.

\[\text{Area of shape A} = \left(\frac{\text{Base of A}}{\text{Base of B}} \right)^2 \times \text{Area of shape B}\]

\[= \left(\frac{3}{15} \right)^2 \times 150 = \frac{1}{25} \times 150 = 6\text{cm}^2\]
5. Explain why the area of a rectangle increases by a factor of 4 when the side length is doubled.

6. Shown are two logos that are mathematically similar.

The area of the smaller logo is 20 cm2.

Find the area of the larger logo.

.......................... cm2
7. Shown below are two boxes that are mathematically similar.

The volume of the small box is 500cm3
Work out the volume of the larger box.

\[\text{cm}^3 \] (2)

8. Shown below are two mathematically similar cuboids.

The volume of cuboid B is 1728cm3
Find the volume of cuboid A.

\[\text{cm}^3 \] (2)
9. Shown below are two mathematically similar parallelograms.

\[
\text{Area: } 5\text{cm}^2 \quad \text{Area: } 45\text{cm}^2
\]

Find \(x\)

\[\text{…cm} \quad (2)\]

10. The two buckets below are similar.

\[
\text{Volume: } 1000\text{cm}^3 \quad \text{Volume: } 8000\text{cm}^3
\]

Find \(y\)

\[\text{…cm} \quad (2)\]
11. Prism A and prism B are mathematically similar

Prism A has a cross-sectional area of 25cm2

Work out the volume of prism B.

\[\text{Volume of prism B} = 25 \times 10 \times 8 \times 24 \]

\[= 48000 \text{ cm}^3 \]

12. A swimming pool has surface area 300m2

The swimming pool is a prism of depth 110cm.

(a) Work out the volume of the swimming pool. Give your answer in m3.

\[\text{Volume} = 300 \times 110 \]

\[= 33000 \text{ m}^3 \]

(b) A scale model of the swimming pool is made. The depth of the model swimming pool is 5.5cm

Find the surface area of the model swimming pool.

\[\text{Surface area} = 300 \times 110 \]

\[= 33000 \text{ m}^2 \]
Cone A and cone B are mathematically similar.
The total surface area of cone A is 120cm2
The total surface area of cone B is 1080cm2
The diameter of cone A is 8cm.

Work out the diameter of cone B.

..........................cm
(3)
14. Below are two similar pyramids.

Pyramid A has a volume of 26cm3

(a) Work out the volume of Pyramid B.

..........................cm3

(b) Work out the total surface area of Pyramid A.

..........................cm2

Pyramid B has a total surface area of 224cm2
15. Wine is kept in three different sized barrels that are mathematically similar.

The table below shows information about the barrels.

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>24 inches</td>
<td>100 litres</td>
</tr>
<tr>
<td>Medium</td>
<td>30 inches</td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td></td>
<td>240 litres</td>
</tr>
</tbody>
</table>

Complete the table.
A shop sells two different sizes of rugby ball.

A small rugby ball has a length of 8cm and surface area of 90 cm².

A large rugby ball has a length of 16cm.

Calculate the surface area of a large rugby ball.

..........................cm²

© Corbettmaths 2015

(2)
17. Duncan bought a toy that grows when placed in water.

Before placing the toy in water it was 4cm tall.
After placing the toy in water it grew to a similarly shaped toy that was 10cm tall.

Is the claim reasonable?
Two clay models of the Statue of Liberty are mathematically similar.

The smaller model has a height of 15cm.
The larger model has a height of 20cm.

The smaller model weighs 108g.

Work out the weight of the larger model.

\[\text{.................g} \]

\(\text{(3)} \)
19. Mrs Hampton is potting plants.
She is using two mathematically similar pots, the smaller is 10cm tall and the larger 14cm tall.

She has two bags of soil, each containing 30 litres of soil.

With the first bag, Mrs Hampton fills 20 small pots using all of the soil in the bag.

How many large pots can be filled completely using the second bag of soil?
20. Two pyramids are mathematically similar.

Pyramid A has a surface area of 20cm²
Pyramid B has a surface area of 320cm²
The height of pyramid A is 2cm

(a) Work out the height of pyramid B.

.................................cm

(b) Work out the weight of pyramid B.
Include suitable units.

.................................

Pyramid A has a weight of 800g
Both pyramids are made of the same material.

© Corbettmaths 2015
21. Two solids are mathematically similar.
The surface area of the smaller solid is $42\pi \text{ cm}^2$
The surface area of the larger solid is $1512\pi \text{ cm}^2$

The height of the larger solid is 96cm.

Work out the height of the smaller solid.

\[\text{.........................cm}\]
\[(3)\]

22. The areas of two mathematically similar shapes are in the ratio 49 : 81

The length of the smaller shape is 24.5cm

Work out the length of the larger shape.

\[\text{.........................cm}\]
\[(3)\]

23. The volumes of two mathematically similar solids are in the ratio 8 : 125

The surface area of the smaller solid is 24 cm2

Work out the surface area of the larger solid.

\[\text{.........................cm}^2\]
\[(3)\]