<table>
<thead>
<tr>
<th>April 25th</th>
<th>5-a-day</th>
<th>Numeracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write down a multiple of 9</td>
<td>Write down a multiple of 12</td>
<td></td>
</tr>
<tr>
<td>Any from 9, 18, 27, 36...</td>
<td>Any from 12, 24, 36, 48, 60...</td>
<td></td>
</tr>
<tr>
<td>Write down a factor of 10</td>
<td>Write down all the factors of 12</td>
<td></td>
</tr>
<tr>
<td>Any from 1, 2, 5, 10</td>
<td>1, 2, 3, 4, 6, 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>How many were sold on Monday?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>How many more were sold on Monday than Tuesday?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tuesday than Monday?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Shade $\frac{2}{3}$ of this diagram.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 25th</td>
<td>5-a-day</td>
<td>Foundation</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>0.1 (\times) 60 = 6</td>
<td>5 (\div) 0.01 = 500</td>
<td></td>
</tr>
</tbody>
</table>

Find the approximate value of \(\frac{41 \times 197}{78} \)

\[
\frac{40 \times 200}{80} = \frac{8000}{80} = 100
\]

Draw \(x \geq 3 \) on the number line

[Number line diagram]

Calculate the volume of this prism.

\[
3 \times 8 = 24
\]

\[
24 \times 8 = 192 \text{cm}^3
\]

Calculate the area

\[
\frac{1}{2} (3 + 7) \times 4 = 20 \text{cm}^2
\]
<table>
<thead>
<tr>
<th>April 25</th>
<th>5-a-day</th>
<th>Higher</th>
</tr>
</thead>
</table>
| \[
\frac{1\frac{1}{5}}{3\frac{7}{10}} + \frac{6}{5} + \frac{9\frac{7}{10}}{10} \]
| \[
\frac{1\frac{2}{10}}{3\frac{7}{10}} = \frac{49}{10}
\]
| \[
4\frac{9}{10}
\]

Find the volume of a cylinder with diameter 8cm and height 20cm.

\[
\pi r^2h
\]
\[
\pi \times 4^2 \times 20 = 1005.3\text{cm}^3
\]

Calculate the area of the sector.

\[
\frac{30^\circ}{360^\circ} \times \pi r^2
\]
\[
\frac{30}{360} \times \pi \times 6^2
\]
\[
9.4\text{cm}^2
\]

Calculate the perimeter of the sector.

\[
\frac{30^\circ}{360^\circ} \times 2\pi r
\]
\[
\frac{30}{360} \times 2\pi \times 6
\]
\[
6 + 6 + \pi = 15.14\text{cm}
\]

Solve \(5x^2 - 11x - 4 = 0\) using the quadratic formula.

\[
a = 5 \quad b = -11
\]
\[
c = -4
\]
\[
\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
\[
\frac{11 \pm \sqrt{121 - 4(5)(-4)}}{10}
\]
\[
11 \pm \sqrt{200}
\]
\[
\frac{11 \pm 10}{10}
\]
\[
\Rightarrow x = 2.51
\]
\[
\Rightarrow x = -0.31
\]