<table>
<thead>
<tr>
<th>February 28th</th>
<th>5-a-day</th>
<th>Numeracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write 2 metres in centimetres</td>
<td>Write 3.4 metres in centimetres</td>
<td></td>
</tr>
<tr>
<td>200 cm</td>
<td>340 cm</td>
<td></td>
</tr>
</tbody>
</table>

What is the probability of selecting a C?

\[
\frac{1}{5}
\]

There are 5 letters.
The probability of a N is 2/5
The other two letters are O and R.
R is more likely than O.

Ann is 30 years old.
Ben is 7 years older than Ann.
Colin is half of Ann’s age.
Dave is two years younger than Ben.

What are the letters?

NURRO

What is the sum of Ann, Ben, Colin and Dave’s ages.

\[
\begin{align*}
30 + 23 + 15 + 21 &= 89
\end{align*}
\]

Draw a hexagon on the isometric dots.
Work out \(\frac{5}{6} - \frac{4}{9} \)

\[\frac{15}{18} - \frac{8}{18} = \frac{7}{18} \]

Solve \(5(2x + 3) = 30 \)

\[10x + 15 = 30 \]
\[10x = 15 \]
\[x = 1.5 \]

Factorise \(9w + 21 \)

\[3(3w + 7) \]

Enlarge triangle \(T \) with scale factor 3 and centre \((2, 1)\)
February 28th

5-a-day

Calculate the distance between (1,3) and (4,10).

Leave your answer as a surd

\[\sqrt{a^2 + b^2} = \sqrt{9 + 49} = \sqrt{58} \]

Higher

\[x^2 + 10x + 25 \]

Expand and simplify

\[(x + 5)^2 \]

Shown is a histogram.

Complete this table

<table>
<thead>
<tr>
<th>Time, t (minutes)</th>
<th>0 < t ≤ 5</th>
<th>5 < t ≤ 20</th>
<th>20 < t ≤ 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of shoppers</td>
<td>6</td>
<td>21</td>
<td>15</td>
</tr>
</tbody>
</table>

Estimate how many people took over 25 minutes.

\[7.5/8/7 \]

Calculate angle EGA

\[\theta = \tan^{-1} \left(\frac{5}{13} \right) \]

\[\theta = 21.04^\circ \]