<table>
<thead>
<tr>
<th>February 3rd</th>
<th>5-a-day</th>
<th>Numeracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>82 - 59 = 23</td>
<td>45 + 29 = 74</td>
<td></td>
</tr>
<tr>
<td>6 x 8 = 48</td>
<td>What number should you add to 43 to make 100? 57</td>
<td></td>
</tr>
<tr>
<td>[\frac{3}{5}] Write as a decimal 0.6 Write as a percentage 60%</td>
<td>0.17 Write as a percentage 17% Write as a fraction (\frac{17}{100})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is the coordinate of D? (2, 1)</td>
<td></td>
</tr>
<tr>
<td>Four numbers have: - a mode of 4 - a range of 7 - a median of 4</td>
<td>List what the four numbers could be 1448 2449 34410 44411</td>
<td></td>
</tr>
</tbody>
</table>
February 3rd

\[w = x + c \]

Make \(x \) the subject of the formula

\[w - c = x \]

5-a-day

Foundation

Solve \(10x + 2 = 27 \)

\[10x = 25 \]

\[x = 2.5 \]

40 people take a test

<table>
<thead>
<tr>
<th></th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Female</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

16

A person is chosen at random, what is the probability they are pass the test?

\[\frac{16}{40} = \frac{2}{5} \]

\[\frac{\pi \times 5^2}{3 \times 5^2} = \frac{25}{75} \]

Calculate the area. Let \(\pi = 3 \)

Complete this table for \(y = 2x - 1 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Plot the coordinates and draw the graph for \(y = 2x - 1 \)
What is the median age?

Around 15.5 years

What is the interquartile range?

Around 19 - 11 = 8 years

ABC is an equilateral triangle.

Triangle: \(\frac{1}{2} \times 8 \times 8 \times 5.60 = 27.7128 \text{ cm}^2 \)

A sphere of diameter 8cm is cut from a cube with side length 8cm.

What volume of the cube is wasted?

Cube: 512 cm³

Sphere: \(\frac{4}{3} \pi r^3 = 268.082572 \text{ cm}^3 \)

Calculate the area of the shaded region.

One sector:

\(\frac{60}{360} \times \pi \times 4^2 = 8.3776 \text{ cm}^2 \)

Three sectors:

\(8.3776 \times 3 = 25.132 \text{ cm}^2 \)

Shaded region:

\(27.7128 - 25.132 = 2.58 \text{ cm}^2 \)

512 - 268.082572 = 243.92 cm³