<table>
<thead>
<tr>
<th>Date</th>
<th>5-a-day</th>
<th>Numeracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 28th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw shape with two lines of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot the coordinate (1, -2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw a rectangle with the same area as this triangle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2} \times 4 \times 3) = 6 cm(^2)</td>
<td>2 cm</td>
<td>3 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculate the perimeter of this rectangle</td>
<td>16</td>
<td>44 + 4 cm</td>
</tr>
<tr>
<td>62 cm</td>
<td>16 cm</td>
<td></td>
</tr>
<tr>
<td>16 cm</td>
<td>6 cm</td>
<td></td>
</tr>
<tr>
<td>6 cm</td>
<td>2 cm</td>
<td></td>
</tr>
<tr>
<td>The perimeter of the shape is 8x + 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work out an expression for the missing side</td>
<td>3x + x + 3 + 2x + 3 = 6x + 6</td>
<td></td>
</tr>
</tbody>
</table>
June 28

5-a-day

Foundation

Expand

2(5w - 3y)

\[10w - 6y\]

Find the highest common factor of 24 and 16

8

Draw the y = 12 - 2x

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

What is the gradient of the line you have drawn?

\[-2\]

Solve

\[6(w - 3) = 2w + 10\]

\[6w - 18 = 2w + 10\]

\[4w - 18 = 10\]

\[4w = 28\]

\[w = 7\]
Solve the simultaneous equations

\[
\begin{align*}
5x - 3y &= 27 \\
3x - y &= 9
\end{align*}
\]

\[
\begin{align*}
x &= 4.25 \\
5(4.25) - 3y &= 10 \\
21.25 - 3y &= 10 \\
-3y &= -11.25 \\
y &= 3.75
\end{align*}
\]

\[y = 3.75\] (check)

\[
3(4.25) - 3.75 = 9
\]

Evaluate \(25^0 + 25^{\frac{1}{2}}\)

\[1 + 5 = 6\]

A is directly proportional to \(C^3\).

When \(A = 800\), \(C = 2\).

\[
A = 100C^3
\]

\[
\begin{align*}
800 &= k \times 2^3 \\
k &= 100 \\
A &= 100 \times 5^3 \\
A &= 12500
\end{align*}
\]

Make \(x\) the subject

\[
y(x - 8) = x + 7
\]

\[
x - 8y = x + 7
\]

\[
x - x = 7 + 8y
\]

\[
y = \frac{7 + 8y}{-1}
\]

\[
x = \frac{7 + 8y}{y - 1}
\]

What graph is shown?

\[
y = \frac{k}{x}
\]

or \(y = \frac{k}{x}\) (k < 0)