June 8th | 5-a-day | Numeracy
--- | --- | ---
2 \times 9 & 18 & 6 \times 6 & 36
5 \times 6 & 30 & 7 \times 8 & 56

Write in digits, the number
Five million and four
5,000,004

\[
\begin{array}{c}
-5 + 5 = 0 \\
-1 + 4 = 3 \\
\[542-1-5\]
\end{array}
\]

Use the cards above to complete the sums.

Adult tickets for a concert cost £15 each.
What is the cost of 40 adult tickets?
40 \times 15 = £600

Children tickets are half price.
Find the cost of four adult tickets and three child tickets.

\[
\begin{align*}
4 \times 15 & = £60 \\
3 \times £7.50 & = £22.50 \\
\text{Total} & = £82.50
\end{align*}
\]
### June 8

#### 5-a-day

<table>
<thead>
<tr>
<th>Simplify</th>
<th>Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4h - 2r + 3h + 7r$</td>
<td>$7h + 5r$</td>
</tr>
</tbody>
</table>

#### Write 28 as a product of primes.

2 x 2 x 7

2 x 7

2 x 1

2

4

7

#### The perimeter is 75 cm.

Find x.

$10x - 4 = 75$

$10x = 79$

$x = 7.9$

#### Calculate the perimeter of PQR to the nearest centimetre.

$a^2 + b^2 = c^2$

$50^2 + b^2 = 100^2$

$b^2 = 7500$

$b = 86.6$

$100 + 86.6 + 50$

$= 236.6$

$\approx 237$
<table>
<thead>
<tr>
<th>June 8</th>
<th>5-a-day</th>
<th>Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 17 20 23 ... ... 36 9 n</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>Work out the nth term and 100th term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factorise fully</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6mp + 12my</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Evaluate | | | \[
\begin{array}{c}
16 \\
-\frac{1}{2} \\
\frac{1}{4}
\end{array}
\] |
| Work out | | | \[
\begin{array}{c}
25^0 \\
1
\end{array}
\] |
| Write \(x^2 + 10x - 4\) in the form \((x + a)^2 + b\), where \(a\) and \(b\) are integers to be found. | | | \[
(x+5)^2 - 25 - 4 \\
(x+5)^2 - 29
\] |
| There are 10 red, 6 blue and 4 white sweets in a bag. John picks two at random. What is the probability he selects two red sweets? | | | \[
P(\text{RR}) = \frac{10}{20} \times \frac{9}{19} = \frac{9}{38}
\] |