<table>
<thead>
<tr>
<th>March 11th</th>
<th>5-a-day</th>
<th>Numeracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Show the time 2:30 on the clock</td>
<td></td>
</tr>
<tr>
<td>Write 14% as a decimal</td>
<td>Write 24% as a fraction</td>
<td></td>
</tr>
</tbody>
</table>
| 0.14 | \[
\frac{24}{100} = \frac{12}{50} = \frac{6}{25}
\] | |
| Work out 15% of 3000 | 450 | |
| 10\% = 300 | 5\% = 150 | |
| Tina says “When you multiply an odd number and an even number together, you will always get an odd number.” | Is Tina correct? No | |
| This sequence increases by the same number each time | Work out the three missing numbers. | |
| 10 18 26 34 42 | 24 ÷ 3 = 8 | |
March 11th

5-a-day

<table>
<thead>
<tr>
<th>Solve $3(x + 1) > 5 - x$</th>
<th>$4x > 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3x + 3 > 5 - x$</td>
<td>$\div 4$</td>
</tr>
<tr>
<td>$+x + 1$</td>
<td>$\div 4$</td>
</tr>
<tr>
<td>$4x + 3 > 5$</td>
<td></td>
</tr>
<tr>
<td>$-3 - 3$</td>
<td>$x > 0.5$</td>
</tr>
</tbody>
</table>

Horse passes point A and travels 15 metres in 20 seconds. The horse then stops for 5 seconds.

Complete the distance-time graph

Calculate the speed of the horse, in metres per second, for the first 20 seconds of the journey.

$\overline{v} = \frac{\overline{d}}{\overline{t}} = \frac{15}{20} = 0.75 \text{ m/s}$

Calculate the angle ABC

A, B and C are vertices of a regular 20-sided polygon.

$\frac{360}{20} = 18^\circ$

The circumference of a tennis ball is 20cm.

What is the radius?

$r = \frac{C}{\pi}$

$6.366 \div 2 = 3.18\text{ cm}$
March 11th

5-a-day

Triangle ABC is isosceles.

One angle is \(x\).

Another angle is \(2x\).

Find the two possible values of \(x\).

\[
2x + 2x + x = 180 \\
5x = 180 \\
x = \frac{180}{5} = 36
\]

Answer 1 \(x = 36\)

\[
x + x + 2x = 180 \\
4x = 180 \\
x = \frac{180}{4} = 45
\]

Answer 2 \(x = 45^\circ\)

Which equation has solutions which are rational?

- \(\frac{4y^2}{6} = 10\)
- \(\frac{4y^2}{8} = 11\)
- \(\frac{4y^2}{3} = 12\)

\[
y^2 = 15 \\
y^2 = 22 \\
y^2 = 9
\]

Answer \(y^2 = 9\) is rational.

Write down the gradient of a line that is perpendicular to the line \(y = 2x\):**

\[-\frac{1}{2}\]

Write down the equation of a line perpendicular to \(y = 2x\):**

\[y = -\frac{1}{2}x + 3\]

Calculate the area of the path:

\[
\pi \times 3^2 - \pi \times 2^2 \\
= 15.7 \text{ m}^2
\]