<table>
<thead>
<tr>
<th>October 4th</th>
<th>5-a-day</th>
<th>Numeracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A pizza costs £1.50. How many pizzas can be bought for £10?</td>
<td>6</td>
<td>$6 \times 1.5 = 9$</td>
</tr>
<tr>
<td>A pizza costs £5.55. Jim pays with a £10 note. How much change should he receive?</td>
<td></td>
<td>£4.45</td>
</tr>
<tr>
<td>Work out 32×101</td>
<td></td>
<td>3232</td>
</tr>
<tr>
<td>20 pencils cost £5. What is the cost of one pencil?</td>
<td>$500 \div 20 = 25p$</td>
<td>25p</td>
</tr>
<tr>
<td>Small pack: 4 batteries for £1.80. Large pack: 6 batteries for £2.76. Which is better value for money?</td>
<td></td>
<td>Small pack 45p each Large pack 46p each</td>
</tr>
</tbody>
</table>
$1.50 = £1

A pair of trousers costs £70.

Work out the cost in dollars.

Paul travels from home to work, which is 80 miles away. It takes one and a half hours.

He stays at work for one hour.

He then travels home, but due to traffic, it takes two hours.

What was Paul’s speed on the journey to work?

\[s = \frac{\text{distance}}{\text{time}} = \frac{80}{1.5} = 53.3 \text{ mph} \]

Using the information above, complete the distance-time graph.

Calculate the area

\[\frac{1}{2} (5 + 9) \times 6 = \frac{1}{2} (14) \times 6 = 36 \text{ cm}^2 \]

Expand and simplify

\[9(y + 3) - 3(2y + 5) \]

\[9y + 27 - 6y - 15 \]

\[3y + 12 \]
October 4

5-a-day

1. **Calculate the area. Give your answer in terms of π.**
 - \(\frac{\pi \times 8^2}{4} \)
 - \(64\pi \div 4 \)
 - \(16\pi \text{ cm}^2 \)

2. **Work out the LCM of 28 and 42.**
 - \(28 = 2 \times 2 \times 7 \)
 - \(42 = 2 \times 3 \times 7 \)
 - \(\text{LCM} = 2 \times 2 \times 3 \times 7 = 84 \)

3. **Write down the Quadratic Formula.**
 - \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

4. **Sketch \(y = f(x) + 1 \).**

Higher

- **The population of a country is 64,000,000.**
 - Write this in standard form.
 - \(6.4 \times 10^7 \)

- **Write 4056 \times 10^9 in standard form.**
 - \(4.056 \times 10^6 \)

- **Shown is \(f(x) \).**