```
Name:
```

Exam Style Questions
Cube Numbers
Cube Roots

Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser
You may use tracing paper if needed

Guidance

1. Read each question carefully before you begin answering it.
2. Don't spend too long on one question.
3. Attempt every question.
4. Check your answers seem right.
5. Always show your workings

6. From the list of numbers
屏,
(a) write down the cube numbers

(2)
(b) write down the cube root of 27 .
........................
(1)
7. Write down the value of

閊 (a) 1^{3}
1
(b) ten cubed

1000
(1)
(c) 5^{3}

105
(1)
(d) 6 cubed

216
(1)
(e) 8^{3}

512
(1)
© CORBETTMATHS 2014
3.

Circle all the cube numbers.
4. Write down the value of

閳 (a) $\sqrt[3]{64}$

(1)
(b) $\sqrt[3]{8}$
2
(1)
(c) $\sqrt[3]{0}$

(1)
(d) $\sqrt[3]{1000}$
(1)

9 CORBETTMATHS 2014
5. Calculate 7.1^{3}

(1)

8.5
(1)
7. Hollie says "when you cube root a number, the answer is always smaller."

倠 Show she is wrong.
$\sqrt[3]{ } 1=1$
${ }^{3} 0=0$
$\sqrt[3]{3} 0.125=0.5$

Counter examples can include the cube root of numbers between 0 and 1 (inclusive)
8. Write down a cube number that is greater than 100 and less than 200.閊
(1)
© CORBETTMATHS 2014
9. Arrange these in order, starting with the smallest.

閊

(2)
10. 729 is both a square number and a cube number.

Find two other numbers that are both square numbers and cube numbers.

(2)
11. Don says

皆- "the difference between two consecutive cube numbers is always odd."
Is Don correct?
You must show your workings.

$$
\begin{array}{cc}
\text { You must show your workings. } \\
\text { odd } \times \text { odd } \times \text { od ld }=\text { odd } & 5 \times 5 \times 5=125 \\
\text { even } \& \text { wen } \times \text { even }=\text { even } & 4 \times 4 \times 4=64 \\
\text { even -odd }=\text { old } & 125-64=61 \\
\text { odd -even = old. } &
\end{array}
$$

yes he is correct.
© CORBETTMATHS 2014

