1st January

Prove \((2n + 2)^2 - (2n + 1)\) is always odd.

Rationalise the denominator
\[
\frac{3 + \sqrt{2}}{\sqrt{3}}
\]

Shown is \(f(x)\)

Sketch the function \(f(x + 1)\)

\[
f(x) = 3x + 2 \\
g(x) = x^2
\]

Find \(fg(x)\)

Find \(gf(5)\)
<table>
<thead>
<tr>
<th>2nd January</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve the simultaneous equations</td>
</tr>
</tbody>
</table>
| \[
| y = x^2 - 1 \\
| x = 5 - y
|\] |
| Work out |
| \[
| \sqrt{200} + \sqrt{50}
|\] |
| Sketch \(y = \sin x \) for \(0 < x < 360 \). |
| Solve \(x^2 - 2x - 15 > 0 \) |
| Find the nth term of |
| 10, 12, 16, 22, 30... ... |
3rd January

<table>
<thead>
<tr>
<th>-0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

Prove

\[(n + 1)^2 - (n - 1)^2 + 4 \]

is always even, if \(n \) is a positive integer.

Rationalise the denominator

\[\frac{\sqrt{3}}{\sqrt{2}} \]

Find the equation of the line that is perpendicular to \(3x + y = 8 \) and passes through the point \((1, 5) \)

Simplify

\[(81x^8)^{-\frac{3}{4}} \]
<table>
<thead>
<tr>
<th>4th January</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve the simultaneous equations</td>
</tr>
<tr>
<td>[x + y = 3]</td>
</tr>
<tr>
<td>[x^2 + y^2 = 5]</td>
</tr>
<tr>
<td>Donald saves some of his pocket money each week.</td>
</tr>
<tr>
<td>He saves 10p in week 1, 16p in week 2, 22p in week 3 and so on for 40 weeks.</td>
</tr>
<tr>
<td>Find the amount he saves in week 40.</td>
</tr>
<tr>
<td>Calculate his total savings over the 40 weeks.</td>
</tr>
<tr>
<td>Rationalise the denominator of</td>
</tr>
<tr>
<td>[\frac{\sqrt{5}}{\sqrt{3} + 2}]</td>
</tr>
<tr>
<td>Prove that the angle in a semi-circle is always 90°</td>
</tr>
<tr>
<td>5th January</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Express ((8 + \sqrt{5})^2) in the form (a + b\sqrt{5})</td>
</tr>
<tr>
<td>Find the minimum value of (x^2 + 6x + 20) and the value of (x) for which it occurs.</td>
</tr>
<tr>
<td>Write the equation of a circle (C), with centre (O) and radius (4)cm.</td>
</tr>
<tr>
<td>Write (2.1\dot{6}) as a mixed number. Give your answer in its simplest form.</td>
</tr>
<tr>
<td>Find the (n)th term of (1, 3, 7, 13, 21, ..., ...)</td>
</tr>
</tbody>
</table>
6th January

Solve the simultaneous equations

\[2y - x + 3 = 0 \]
\[x^2 + xy = 0 \]

Shown is a sketch of the graph
\[y = f(x) \].

(a) Sketch \(-f(x)\)
(b) Sketch \(f(x + 1)\)

Label known coordinates

- \((2,0)\)
- \((-3,-8)\)
- \((-8,0)\)

The line \(l_1\) has equation \(y = 4x - 10\). **The line \(l_2\) has equation** \(x + y = 20\)

The lines \(l_1\) and \(l_2\) intersect at the point \(C\).
The lines \(l_1\) and \(l_2\) cross the line \(y = 2\) at the points \(A\) and \(B\).

Find the area of triangle \(ABC\).

A circle has equation \(x^2 + y^2 = 100\)

Find the equation of the tangent to the circle at the point \((6, 8)\)
7th January

Expand and simplify

\[(x + 2)(x + 5)(2x - 1)\]

The line \(l_1\) **has equation** \(y = 4x + 3\)

The line \(l_2\) **has equation** \(5x + 2y - 9 = 0\)

Find the point of intersection of \(l_1\) **and** \(l_2\)

Find the gradient of line \(l_2\)

Find the value of \(x\)

Which number has no reciprocal?

ABCD is a square, \(X\) **is a point in the diagonal** \(BD\) **and the perpendicular from** \(B\) **to** \(AX\) **meets** \(AC\) **in** \(Y\).

Prove that triangles \(AXD\) **and** \(AYB\) **are congruent.**
<table>
<thead>
<tr>
<th>8th January</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve the simultaneous equations</td>
<td></td>
</tr>
<tr>
<td>(x^2 + y^2 = 9)</td>
<td></td>
</tr>
<tr>
<td>(y = x + 3)</td>
<td></td>
</tr>
<tr>
<td>Find the coordinates where (y = 2x^2 - 7x + 3) crosses each axis.</td>
<td></td>
</tr>
<tr>
<td>Sketch (y = \tan x) for (0 \leq x \leq 360)</td>
<td></td>
</tr>
<tr>
<td>Prove that the angle at the centre is twice the angle at the circumference.</td>
<td></td>
</tr>
<tr>
<td>Given that (125^x = 25^{x+5})</td>
<td></td>
</tr>
<tr>
<td>Find (x)</td>
<td></td>
</tr>
</tbody>
</table>
9th January

Simplify \(\frac{18x^4}{6x} \)

Find the equation of the straight line passing through B(−2, 8) and C(1, 0).
Give your answer in the form \(ax + by + c = 0 \)
where \(a, b \) and \(c \) are integers.

Express \(3x^2 + 12x + 13 \) in the form \(a(x + b)^2 + c \)

Find the vector \(\overrightarrow{OB} \) in terms of \(a \) and \(b \)

Q is the midpoint of OB.
B is the midpoint of AC.
Show PQC is a straight line.

AOB is a triangle.
P is a point on AO.

\[\overrightarrow{AB} = 2a \quad \overrightarrow{AO} = 6b \quad \frac{AP}{PO} = 2:1 \]
Given
\[2y = \frac{1}{8} \]

Find \(y \)

Show the equation \(x^2 - 4x + 1 = 0 \) can be written in the form
\[x = 4 - \frac{1}{x} \]

Starting with \(x_0 = 3 \), use the iteration formula
\[x_{n+1} = 4 - \frac{1}{x_n} \]
twice to find an estimate of the solution of \(x^2 - 4x + 1 = 0 \)

Express these vectors in terms of \(x \) and \(y \)

\[\overrightarrow{BC} \]

\[\overrightarrow{BM} \]

\[\overrightarrow{AM} \]

ABC is a triangle.
M lies on BC such that \(BM = \frac{4}{5} BC \)

Express these vectors in terms of \(x \) and \(y \)
11th January

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplify</td>
<td>((6x^{\frac{1}{2}})^3) (\frac{2x}{2x})</td>
</tr>
<tr>
<td>Evaluate</td>
<td>(1 \frac{11}{25})^{-\frac{1}{2}}</td>
</tr>
<tr>
<td>Solve</td>
<td>(2x^2 - 5x + 3 < 0)</td>
</tr>
</tbody>
</table>

The histogram shows the speeds in miles per hour of 82 cars on a road.

- 14 cars were travelling over 50 mph.

Calculate an estimate of the number of cars that were travelling between 42 and 49 mph.

14 cars were travelling over 50 mph.
<table>
<thead>
<tr>
<th>12th January</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve the simultaneous equations</td>
</tr>
<tr>
<td>[x = 3y + 6]</td>
</tr>
<tr>
<td>[3xy = 24 - x]</td>
</tr>
<tr>
<td>Write (x^2 + 8x + 17) in the form ((x + a)^2 + b)</td>
</tr>
<tr>
<td>Find the coordinates of the turning point of (y = x^2 + 8x + 17)</td>
</tr>
<tr>
<td>Calculate the length BC.</td>
</tr>
<tr>
<td>Find (x), the number of apples in the crate.</td>
</tr>
</tbody>
</table>

There are \(x \) apples in a crate. 4 of the apples are bad.

Fiona chooses two apples from the crate, without replacement. The probability she selects two bad apples is \(\frac{1}{11} \)

Prove \(x^2 - x - 132 = 0 \)
13th January

<table>
<thead>
<tr>
<th>Speed (m/s)</th>
<th>Find t</th>
<th>Find the rate of deceleration from 12 to t seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The average speed from 0 to t seconds was 5.96m/s

<table>
<thead>
<tr>
<th>Solve</th>
<th>Find x</th>
<th>Prove the opposite angles in a cyclic quadrilateral add to 180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^2 - 5x + 4 > 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prove the opposite angles in a cyclic quadrilateral add to 180°
14th January

Find the value of
\[\frac{2}{5} \]

32

Find the vector \[\overrightarrow{AB} \]

Find the vector
\[\overrightarrow{EC} = \frac{1}{5} \overrightarrow{CB} \]
\[\overrightarrow{DE} = \frac{1}{5} \overrightarrow{a} \]

Prove DC is parallel to AB

Prove the angles in the same segment are equal.

Write
\[\frac{4}{\sqrt{5}} - \sqrt{\frac{2}{9}} \]

in the form \(k\sqrt{5} \)
Factorise completely
\[x^3 - 25x \]

The square of \(w \) is 5
Write down the value of \(w^5 \)

Find the probability of \(B \) given \(A \).

Find the values of \(a, b \) and \(c \).

A curve has equation \(y = ax^2 + bx + c \)
The curve crosses the \(x \)-axis at \((3, 0)\) and \((4, 0)\)
The curve crosses the \(y \)-axis at \((0, 12)\)

\[\begin{array}{|c|c|}
\hline
\text{Weight (x kg)} & \text{Frequency} \\
\hline
60 < x \leq 64 & 10 \\
64 < x \leq 68 & 20 \\
68 < x \leq 72 & 30 \\
72 < x \leq 76 & 15 \\
76 < x \leq 80 & 18 \\
80 < x \leq 84 & 7 \\
\hline
\end{array} \]

Calculate an estimate of the median
16th January

<table>
<thead>
<tr>
<th>Evaluate</th>
<th>A bag contains 14 sweets. 8 sweets are red. 4 sweets are yellow. 2 sweets are green. Two sweets are taken from the bag without replacement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>((125 \times 6)^{\frac{2}{3}})</td>
<td>Work out the probability that the two sweets are different colours.</td>
</tr>
<tr>
<td>A bag contains 14 sweets. 8 sweets are red. 4 sweets are yellow. 2 sweets are green. Two sweets are taken from the bag without replacement.</td>
<td>Work out the probability that the two sweets are different colours.</td>
</tr>
<tr>
<td>Calculate the bearing of A from B.</td>
<td>Calculate the bearing of A from B.</td>
</tr>
<tr>
<td>Ship A is 50km from X on a bearing of 258°. Ship B is 44km from X on a bearing of 312°.</td>
<td>Ship A is 50km from X on a bearing of 258°. Ship B is 44km from X on a bearing of 312°.</td>
</tr>
<tr>
<td>Shown is a right angle triangle. Find the possible value(s) of x</td>
<td>Shown is a right angle triangle. Find the possible value(s) of x</td>
</tr>
<tr>
<td>Shown below is a rectangular based pyramid. The apex E is directly over the centre of the base. Calculate angle between the face ABE and the base ABCD.</td>
<td>Shown below is a rectangular based pyramid. The apex E is directly over the centre of the base. Calculate angle between the face ABE and the base ABCD.</td>
</tr>
</tbody>
</table>
17th January

Simplify fully

\[
\frac{4x^2 - 25}{6x^2 - 11x - 10}
\]

Shown is the graph of the function

\[y = f(x)\]

Sketch

(a) \(f(x + 1)\)

(b) \(f(-x)\)

A formula for the area of a regular hexagon with side length \(x\) is given. Prove this formula.

Area

\[
Area = \frac{3}{2} \sqrt{3} \ x^2
\]

The straight line \(l_1\) has equation

\[3x + y - 1 = 0\]

The straight line \(l_2\) is perpendicular to line \(l_1\) and passes through the point \((8, 2)\)

Find the equation of \(l_2\) in the form

\[y = mx + c\]
18th January

1. **Rearrange** \(y + 3 = x(y + 2) \) to make \(y \) the subject of the formula.

2. **Vector Question**: \(\overrightarrow{AB} = \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \)

 Write down a vector that is perpendicular to \(\overrightarrow{AB} \) and the twice the length.

3. **Price Reduction**: After a reduction of 3% in the original price, a motorbike is sold for £700.

 Both of these values are correct to one significant figure.

4. **Calculate Original Price**: Calculate the greatest possible original price before the reduction was applied.

5. **Probability Problem**: Rebecca has 9 cards, each with a number on it.

 She picks three cards at random, without replacement.
 Rebecca multiplies the three numbers to get a score.

 Calculate the probability that the score is an even number.
19th January

The events A and B are mutually exclusive.

P(A) = 0.5
P(B) = 0.4

Find P(A ∪ B)

Write in the form $a\sqrt{b}$, where a and b are integers to be found.

\[
\frac{24}{\sqrt{6}}
\]

Prove algebraically that the sum of the squares of any two odd numbers is always even.

Work out the rate at which the pulse is increasing at four minutes.
Include units.

Work out the rate at which the pulse is decreasing at seven minutes.
Include units.
<table>
<thead>
<tr>
<th>20th January</th>
<th></th>
</tr>
</thead>
</table>
| ![Graph](image.png) | Shown is the curve \(y = \frac{1}{4}\sin x \)
Write down the coordinates of A and B |
| The point (12, 5) lies on a circle with centre (0, 0)
Write down the coordinates of another three points on the circle. | |
| Expand and simplify
\((x - 3)^3\) | |
| There are 20 sweets in a box. There are \(y \) chocolate sweets and the rest of the sweets are mints.
Florence takes out two sweets, at random, from the box. | Find an expression, in terms of \(y \), for the probability that Florence takes two chocolate sweets. |
| ![Frustum](image.png) | Calculate the surface area of the frustum
Shown is a frustum of a cone that had a perpendicular height of 40cm | |

© Corbettmaths 2016
www.corbettmaths.com
21st January

Express as a single fraction.
\[
\frac{1}{x + 1} + \frac{4}{x - 2}
\]

<table>
<thead>
<tr>
<th>Salary (£1000s)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ s ≤ 10</td>
<td>8</td>
</tr>
<tr>
<td>10 ≤ s ≤ 20</td>
<td>48</td>
</tr>
<tr>
<td>20 ≤ s ≤ 30</td>
<td>50</td>
</tr>
<tr>
<td>30 ≤ s ≤ 50</td>
<td>11</td>
</tr>
<tr>
<td>50 ≤ s ≤ 200</td>
<td>3</td>
</tr>
</tbody>
</table>

Calculate an estimate of the median salary

Show the equation
\[x^3 + 3x = 1\]
has a solution between x=0 and x=1

Show the equation
\[x^3 + 3x = 1\]
can be rearranged to give
\[x = \frac{1}{3} - \frac{x^3}{3}\]

Starting with \(x_1 = 0\)
use the iteration formula
\[x_{n+1} = \frac{1}{3} - \frac{(x_n)^3}{3}\]
three times to find a solution to
\[x^3 + 3x = 1\]
22nd January

A cuboid has length \((x + 9)\) cm, width \((x + 2)\) cm and height 5 cm. The surface area of the cuboid is 400 cm².

Find the value of \(x\) to 2 decimal places.

Which transformation will have a minimum point of \((-5, 2)\)?

Which transformation will have a minimum point of \((8, 2)\)?

Shown is the curve with equation \(y = f(x)\)
The coordinates of the minimum point of the curve are \((5, 2)\).

Find \(x\)

By considering bounds, work out the value of \(w\) to a suitable degree of accuracy.

\[w = \frac{\sqrt{c}}{p} \]

\(c = 4.24\) correct to 2 decimal places
\(p = 7.88\) correct to 3 decimal places
23rd January

Find the minimum point of the graph $y = x^2 - 6x + 7$

The set of values for x that satisfies a quadratic inequality is $x < -0.5$ or $x > 1.5$

Write down a possible quadratic inequality.

Diagram

- **A**
- **B**
- **C**
- **D**
- **E**
- **F**

- **BCDE** is a square
- **DFE** and **ABE** are equilateral triangles

Find the length of **AF**

Below is a regular hexagon

Find x
24th January

Given

\[f(x) = \frac{ax + 3}{4} \]

\[f(7) = 6 \]

Find \(a\)

A PE test has two sections, theory and practical.
Everyone in a class who took the PE test passed at least one section.
65% passes the theory section and 80% passed the practical section.

Represent this information on a Venn diagram

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

ABCD is a quadrilateral.

\[AB = 8\text{cm}, \ AD = 15\text{cm} \text{ and } CD = 12\text{cm}. \]

\[\text{Angle } ADC = 78^\circ \text{ and angle } BAC = 20^\circ \]

Calculate the length of AC.

Calculate the area of triangle ABC.

Find the set of values of \(x\) for which

\[\text{both } 9x - 2 < 18 - x \]
\[\text{and } x^2 - x \geq 20 \]
25th January

Prove the angles in a triangle add up to 180°.

Hint: consider parallel lines.

A boat sails 4 miles North from A to B. Then the boat sails 5 miles North-East from B to C. The boat then sails directly back to C.

How far does the boat sail in total?

Rationalise the denominator of $\frac{2 + \sqrt{3}}{\sqrt{5} - 1}$

x is an obtuse angle.

Given

\[
\sin(x) = \frac{5}{13}
\]

Find $\cos(x)$

Expand and simplify

\[(1 + \sqrt{2})(1 + \sqrt{3})(2 - \sqrt{3})\]
26th January

Express in the form \(2^n\)

(a) \(\frac{1}{16}\)

(b) \(2\sqrt{2}\)

The histogram shows the speeds of cars travelling down a road. 24 cars travelled faster than 40mph.

How many cars travelled less than 20mph?

The bearing of A to B is \(x\). \(x\) is less than 180°.

Prove the bearing of B to A is \((180 + x)^\circ\)

Find the area of the triangle

© Corbettmaths 2017

www.corbettmaths.com
27th January

Write \(1.24\) as a mixed number. Give your answer in its simplest form.

Write in the form \(a\sqrt{2}\)

\[\sqrt{72} + \sqrt{3 \times \sqrt{6}}\]

<table>
<thead>
<tr>
<th>Mass (m kg)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 < m ≤ 45</td>
<td>64</td>
</tr>
<tr>
<td>45 < m ≤ 50</td>
<td>74</td>
</tr>
<tr>
<td>50 < m ≤ 55</td>
<td>155</td>
</tr>
<tr>
<td>55 < m ≤ 60</td>
<td>80</td>
</tr>
<tr>
<td>60 < m ≤ 65</td>
<td>26</td>
</tr>
<tr>
<td>65 < m ≤ 70</td>
<td>1</td>
</tr>
</tbody>
</table>

Calculate an estimate of the interquartile range.

Shown is the graph of the function \(y = f(x)\)

Sketch
(a) \(-f(x)\)
(b) \(f(x + p)\) where \(0 < p < 1\)
28th January

Solve the inequality

\[5x^2 < 45 \]

Jack picks three apples at random, one at a time, replacing each before picking the next. Find the probability that he chooses two over 90g and one under 75g.

The box plot shows information about the masses of apples in a box

The minimum point of a quadratic graph in the form \(y = x^2 + ax + b \) is \((-2, -10)\).

Find \(a \) and \(b \).

\(f(x) = 3x - 5 \)

Find \(f^{-1}(x) \)

ABCD and LMNO are squares. Angle CBL = x

Prove that triangles ABO and CBL are congruent.
29th January

Shown is the graph of the function $y = f(x)$

Sketch
(a) $f(-x)$
(b) $f(x) + 3$

Find the coordinates where the line $2x - y + 3 = 0$ and the curve $y = x^2 - x - 7$ intersect

Find $P(A|B')$

Prove the opposite angles in a cyclic quadrilateral add to 180°
30th January

Make y the subject of the formula

\[c = w - 4ay^3 \]

Calculate \(\theta \)

Perimeter = 22.81 cm

\[\theta \]

\[\begin{array}{c}
\bigcirc \\
C \\
4x \\
7 \\
D \\
\bigcirc
\end{array} \]

\(\xi = 40 \) students
C = students who own a cat
D = students who own a dog

A student is chosen at random. They own a dog. Work out the probability that they own a cat

\(\xi = 40 \) students

State the coordinates of the vertex of the curve \(y = x^2 + 10x + 21 \)
<table>
<thead>
<tr>
<th>31st January</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand and simplify</td>
</tr>
<tr>
<td>((2x + 3)^3)</td>
</tr>
<tr>
<td>Make (m) the subject of the formula</td>
</tr>
<tr>
<td>(E = mgh + \frac{1}{4}mv^2)</td>
</tr>
<tr>
<td>Calculate the sum of the first 50 odd numbers</td>
</tr>
<tr>
<td>Solve the inequality</td>
</tr>
<tr>
<td>(12x^2 + 7x + 1 \leq 0)</td>
</tr>
<tr>
<td>How many regular polygons have integer interior angles?</td>
</tr>
</tbody>
</table>