Question 1:
(a) Complete the tables below for \(y = \sin(x) \)

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & 0^\circ & 30^\circ & 45^\circ & 60^\circ & 90^\circ & 120^\circ \\
\hline
y & & & & & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & 135^\circ & 150^\circ & 180^\circ & 210^\circ & 225^\circ & 240^\circ \\
\hline
y & & & & & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & 270^\circ & 300^\circ & 315^\circ & 330^\circ & 360^\circ \\
\hline
y & & & & & & \\
\hline
\end{array}
\]

(b) Plot the points and draw the graph of \(y = \sin(x) \)
Question 2: (a) Complete the tables below for \(y = \cos(x) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>135°</th>
<th>150°</th>
<th>180°</th>
<th>210°</th>
<th>225°</th>
<th>240°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>270°</th>
<th>300°</th>
<th>315°</th>
<th>330°</th>
<th>360°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Plot the points and draw the graph of \(y = \cos(x) \)
Question 3:
(a) Complete the tables below for \(y = \tan(x) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0°</th>
<th>1°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>75°</th>
<th>89°</th>
<th>90°</th>
<th>91°</th>
<th>105°</th>
<th>120°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>135°</th>
<th>150°</th>
<th>165°</th>
<th>179°</th>
<th>180°</th>
<th>181°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>195°</th>
<th>210°</th>
<th>225°</th>
<th>240°</th>
<th>255°</th>
<th>269°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>270°</th>
<th>271°</th>
<th>285°</th>
<th>300°</th>
<th>315°</th>
<th>330°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>345°</th>
<th>360°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Plot the points and draw the graph of \(y = \tan(x) \)
Question 4: Sketch the graph of \(y = \cos(x) \) for \(0^\circ \leq x \leq 360^\circ \)

Question 5: Sketch the graph of \(y = \sin(x) \) for \(0^\circ \leq x \leq 360^\circ \)

Question 6: Sketch the graph of \(y = \tan(x) \) for \(0^\circ \leq x \leq 360^\circ \)

Question 1: Which of these values cannot be the sine of an angle?

\[0 \quad -0.9 \quad \frac{2}{3} \quad 1.2 \]

Question 2: Which of these values cannot be the cosine of an angle?

\[-1 \quad 3 \quad 0.7 \quad -0.04 \]

Question 3: Here is part of the curve \(y = \sin(x) \)

(a) Write down the coordinates of the point A
(b) Write down the coordinates of the point B

Question 4: Here is part of the curve \(y = \cos(x) \)

(a) Write down the coordinates of the point A
(b) Write down the coordinates of the point B
Question 5: Here are three graphs for $270^\circ \leq x \leq 360^\circ$

(a) Which graph is $y = \sin(x)$?

(b) Which graph is $y = \cos(x)$?

(c) Which graph is $y = \tan(x)$?

Question 6: Write down the coordinates of the maximum point of $y = \sin(x)$ for $180^\circ \leq x \leq 540^\circ$

Question 7: Write down the coordinates of the minimum point of $y = \sin(x)$ for $360^\circ \leq x \leq 720^\circ$

Question 8: Write down the coordinates of the minimum point of $y = \cos(x)$ for $360^\circ \leq x \leq 720^\circ$

Question 9: Here is a sketch of $y = \cos(x)$ for $-360^\circ \leq x \leq 360^\circ$

(a) Write down the coordinates of the point A

(b) Write down the coordinates of the point B
Question 10: Here is the graph of \(y = \sin(x) \) for \(0^\circ \leq x \leq 360^\circ \)

One solution of \(\sin(x^\circ) = -0.5 \) is \(x = 210^\circ \)

(a) Find another solution of \(\sin(x^\circ) = -0.5 \) for \(0^\circ \leq x \leq 360^\circ \)

(b) Find the solutions of \(\sin(x^\circ) = 0.5 \) for \(0^\circ \leq x \leq 360^\circ \)

Question 11: Here is a sketch of \(y = \cos(x) \) for \(0^\circ \leq x \leq 360^\circ \)

\(\cos(x) = \cos(30^\circ) \)

(a) Work out the value of \(x \) when \(90^\circ \leq x \leq 360^\circ \)

\(\cos(x) = -\cos(30^\circ) \)

(b) Find the two values of \(x \) for \(0^\circ \leq x \leq 360^\circ \)
Question 12: Here is the graph of $y = \sin(x)$ for $0 \leq x \leq 360$

One solution of $\sin x = -0.5$ is $x = 330^\circ$
Find another solution of $\sin x = -0.5$

Question 13: Here is the graph of $y = \cos(x)$

(a) Use the graph to solve $\cos(x) = 0.75$

(b) Use the graph to solve $\cos(x) = -0.75$