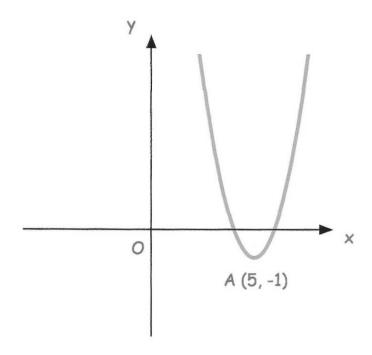

Name:

Level 2 Further Maths



Ensure you have: Pencil or pen

## Guidance

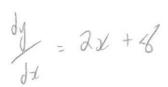

- 1. Read each question carefully before you begin answering it.
- 2. Check your answers seem right.
- 3. Always show your workings

## Revision for this topic

www.corbettmaths.com/more/further-maths/



1. Below is a sketch of y = f(x)



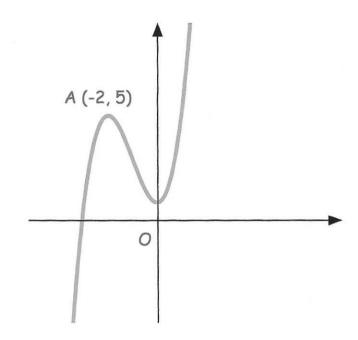

There is a minimum point at A (5, -1)

(a) Write down the equation of the tangent at the point A

(a) Write down the equation of the normal at the point A

- A curve has equation  $y = x^2 + 8x$ 2.
  - (a) Find  $\frac{dy}{dx}$




- (2)2:1
- (b) Find the gradient of the curve at the point (1,9)

$$(2\times1)+8=10$$

- (2)
- (c) Find the gradient of the normal to the curve at the point (1, 9)

(1)

3. Here is a sketch of y = f(x)



There is a maximum point at A (-2, 5)

(a) Write down the equation of the normal to the curve at A

Given 
$$\frac{dy}{dx} = 3x^2 + 6x$$

(b) Work out the equation of the normal to the curve at the point at (-1,3)

At 
$$z=-1$$
 by  $z=3-6=-3$ 

$$y=\frac{1}{3}z+c$$

$$z=-\frac{1}{3}+c$$

$$c=3\frac{1}{3}$$

$$y = \frac{1}{3}x + 3\frac{1}{3}$$

4. Work out the equation of the normal to the curve  $y = 2x^2 - 4x + 1$  at the point (2, 1)

Give your answer in the form y = mx + c

5. Work out the equation of the normal to the curve  $y = x^3 - 2x + 1$  at the point where x = -1 x = -1

 $y = -\chi + 1 \tag{5}$ 

6. Work out the equation of the normal to the curve  $y = 2x^3 + x^2 - 7x - 5$  at the point (0, -5)

Give your answer in the form y = mx + c

$$y = 6x^{2} + 2x - 7$$

$$x = 0$$

$$y = \frac{1}{7}x + C$$

$$-5 = 0 + C$$

- $y = \frac{1}{4}x 5$  (5)
- 7. Work out the equation of the normal to the curve y = (x + 2)(x + 3) at the point where x = -4

$$y = \frac{1}{3}l + C$$

$$2 = -\frac{4}{3} + C$$

$$C = 3\frac{1}{3}$$

$$y = \frac{1}{3} \times + 3\frac{1}{3}$$

The point A lies on the curve  $y = x^2 - 2x + 4$ 8.

The x-coordinate of A is -1

The normal at A also intersects the curve at B.

Work out the coordinates of point B.

$$\frac{dy}{dx} = 2x - 2$$

$$\frac{dy}{dx} = -4$$

$$(4x-13)(x+1)=0$$

## 9. A curve has equation $y = 4x^2 + 2x - 3$

A normal to the curve is drawn at the point A. The normal is parallel to the line with equation x - 6y = 2

Find the equation of the normal at the point A. Give your answer in the form y = mx + c

$$y = 8x + 2$$

$$2 = 6y = 2$$

$$6y = 2x - 2$$

$$y = -1$$

 $y = \frac{1}{6} \times + C$   $y = \frac{1}{6} \times + C$ 

(6)