Name:

Level 2 Further Maths

Ensure you have: Pencil or pen

Guidance

- 1. Read each question carefully before you begin answering it.
- 2. Check your answers seem right.
- 3. Always show your workings

Revision for this topic

www.corbettmaths.com/more/further-maths/

1. Work out the values of a and b such that

$$x^2 + 8x + 3 \equiv (x + a)^2 + b$$

$$(24+4)^2-16+3$$

$$(\chi + 4)^2 - 13$$

$$a = \dots \qquad 4 \qquad b = \dots \qquad b = \dots$$
 (2)

2. Write $x^2 + 4x + 20$ in the form $(x + a)^2 + b$, where a and b are constants

$$(x+2)^2-4+20$$

(2)

3. Write $x^2 - 6x - 10$ in the form $(x + a)^2 + b$, where a and b are constants

$$(x-3)^2-19$$

(2)

4. Write $x^2 + x - 8$ in the form $(x + a)^2 + b$, where a and b are constants

$$(x+\frac{1}{2})^{2} - \frac{1}{4} - 8$$

$$(x+\frac{1}{2})^{2} - 8\frac{1}{4}$$

$$(x+\frac{1}{2})^{2} - \frac{33}{4}$$

(2)

5. Write $x^2 - 9x - 1$ in the form $(x + a)^2 + b$, where a and b are constants

$$(\chi - \frac{9}{2})^2 - \frac{81}{4} - 1$$
 $(\chi - \frac{9}{2})^2 - \frac{85}{4}$

(2)

6. Work out the values of a and b such that

$$x^{2} + 11x + 3 \equiv (x + a)^{2} + b$$

$$\left(\chi + \frac{11}{2}\right)^{2} - \frac{121}{4} + 3$$

$$\left(\chi + \frac{11}{2}\right)^{2} - \frac{109}{4}$$

$$a = \frac{1}{2}$$
 $b = \frac{109}{4}$

(2)

7.
$$(x+a)^2 + 11 \equiv x^2 - 10x + b$$

out the values of
$$a$$
 and b

$$\chi^{2} + 2a\chi + a^{2} + 11 = \chi^{2} - 10\chi + b$$

$$za = -10$$

$$a = -5$$

$$a = \dots -5$$
 $b = \dots 36$

8.
$$x^2 + 4ax + b \equiv (x+8)^2 - 3a$$

Work out the values of a and b

$$x^2 + 4ax + b = x^2 + 16x + 64 - 3a$$

$$a = \frac{4}{52}$$
 (3)

Write $2x^2 + 8x + 2$ in the form $a(x + b)^2 + c$, where a, b and c are constants 9.

$$2\left[\chi^{2}+4\chi+1\right]$$

(3)

10. Write $2x^2 + 12x - 3$ in the form $a(x + b)^2 + c$, where a, b and c are constants

$$2\left(x^{2} + 6x - \frac{3}{2}\right)$$

$$2\left((x+3)^{2} - 9 - \frac{3}{2}\right)$$

$$2\left((x+3)^{2} - \frac{2}{2}\right)$$

$$2\left((x+3)^{2} - \frac{2}{2}\right)$$

$$2\left((x+3)^{2} - 2\right)$$

(4)

11. Write $3x^2 - 12x + 2$ in the form $a(x + b)^2 + c$, where a, b and c are constants

$$3\left[\chi^{2} - 4\chi + \frac{7}{3}\right]$$

$$3\left[(\chi-z)^{2} - 4 + \frac{7}{3}\right]$$

$$3\left[(\chi-z)^{2} - 3\frac{1}{3}\right]$$

$$3\left[(\chi-z)^{2} - \frac{10}{3}\right]$$

$$3\left[\chi-z\right]^{2} - \frac{10}{3}$$

12. Write $4x^2 + 12x - 5$ in the form $a(x + b)^2 + c$, where a, b and c are constants

$$4\left[\chi^{2}+3\chi-\frac{5}{4}\right]$$

$$4\left[\left(\chi+\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{5}{4}\right]$$

$$4\left[\left(\chi+\frac{3}{2}\right)^{2}-\frac{19}{4}+\frac{5}{4}\right]$$

$$4\left(\chi+\frac{3}{2}\right)^{2}-\frac{19}{4}$$

(4)

13. Write $2x^2 - 17x + 1$ in the form $a(x + b)^2 + c$, where a, b and c are constants

$$2\left[\chi^{2} - \frac{17}{2}\chi + \frac{1}{2}\right]$$

$$2\left[\left(\chi - \frac{17}{4}\right)^{2} - \frac{289}{16} + \frac{1}{2}\right]$$

$$2\left[\left(\chi - \frac{17}{4}\right)^{2} - \frac{289}{16} + \frac{8}{16}\right]$$

$$2\left[\left(\chi - \frac{17}{4}\right)^{2} - \frac{289}{16}\right]$$

$$2\left[\left(\chi - \frac{17}{4}\right)^{2} - \frac{281}{8}\right]$$

$$2\left[\chi - \frac{17}{4}\right]^{2} - \frac{281}{8}$$

14. Write $8x^2 - 56x + 5$ in the form $a(bx + c)^2 + d$ where a, b, c and d are integers.

$$8[x^{2}-71+\frac{5}{8}]$$

$$8[(x^{4}-\frac{7}{2})^{2}-\frac{49}{4}+\frac{5}{8}]$$

$$2(2x-7)^2-93$$
 (5)

15. (a) Work out the values of a and b such that

$$x^2 + 10x + 7 \equiv (x+a)^2 + b$$

$$(x+5)^2 - 25 + 7$$

 $(x+5)^2 - 18$

$$a = \frac{5}{2}$$
 $b = \frac{-18}{2}$ (2)

(b) Write down the coordinates of the minimum point on the curve $y = x^2 + 10x + 7$

$$(-5^{-}-18)$$
(1)

16. (a) Work out the values of a and b such that

$$x^2 - 6x - 20 \equiv (x+a)^2 + b$$

$$(x-3)^{2}-9-20$$

 $(x-3)^{2}-29$

$$a = \frac{-3}{}$$
 $b = \frac{-29}{}$ (2)

(b) Write down the coordinates of the minimum point on the curve $y = x^2 - 6x - 20$

$$(3, -79)$$

17. By using completing the square, find the coordinates of the minimum point on the curve $y = x^2 + 3x - 5$

$$(21+32)^{2}-94-5$$

 $(2+32)^{2}-294$

$$\left(-\frac{3}{2},-\frac{29}{4}\right)$$
(4)

18. The nth term of a sequence is $n^2 - 4n + 5$

By using completing the square, show that every term is positive.

$$(n-2)^2-4+5$$

$$(n-2)^2+1$$
Since $(n-2)^2$ is always greater than, or equal to 0,
$$(n-2)^2+1$$
 is always positive

19. The nth term of a sequence is $n^2 - 10n + 30$

By using completing the square, show that every term is positive.

$$(\Lambda - 5)^2 - 25 + 30$$

 $(\Lambda - 5)^2 + 5$

Since
$$(n-5)^2 70$$

then $(n-5)^2 + 570$

(3)