Name:

Level 2 Further Maths
Negative Indices
Fractional Indices

Ensure you have: Pencil or pen

Guidance

- 1. Read each question carefully before you begin answering it.
- 2. Check your answers seem right.
- 3. Always show your workings

Revision for this topic

www.corbettmaths.com/more/further-maths/

- 1. Write as a single power of x
 - (a) $\frac{1}{x^3}$

(b) $\sqrt[4]{x}$

X 1/4 (1)

(c) $\sqrt{\frac{1}{x^8}}$

NOW!

$$\int x^{-8} = \chi^{-4}$$

$$(x^{-4} \times x^{-4} = \chi^{-8})$$

 χ^{-4}

 $(d) \quad \frac{1}{\sqrt[3]{x^2}}$

73

$$\chi^{-\frac{2}{3}}$$
(1)

2. Write $\frac{m^3 \times m^2}{(m^7)^2}$ as a single power of m

3. Given that $2^m + 2^n = \frac{9}{32}$

Find mn

$$\frac{1}{4} + \frac{1}{31}$$

$$\frac{8}{31} + \frac{1}{31} = \frac{9}{31}$$

$$\frac{1}{2} + \frac{1}{2} = \frac{7}{31}$$

10

(3)

4.
$$x \quad x^3 \quad x^0 \quad x^{-2}$$

Find a value of x such that the expressions above are in order, from smallest to largest.

5. Write $\sqrt{w^5}$ as a single power of w

						4	5	/ "	6							
	Ĺ	^	_				1000	L								
					*			*								
													(-	ı	1

6. Write 27 in the form 9^n

7. Simplify
$$(16x^8)^{\frac{3}{4}}$$

8. Evaluate
$$\left(\frac{8}{125}\right)^{-\frac{2}{3}}$$

(2)

9.
$$3^x = 9\sqrt{3}$$
 and $3^y = \frac{1}{\sqrt{3}}$

Work out 3^{x-y}

$$3^{x} = 3^{2} \times 3^{2}$$
 $3^{y} = \frac{1}{3^{y}}$
 $3^{y} = 3^{y}$
 $3^{y} = 3^{y}$
 $3^{y} = 3^{y}$

$$3^{x-y} = 3^{x} \div 3^{y}$$

= $3^{x} \div 3^{-\frac{1}{2}}$
= 3^{3}

27