Name:
5-a-day
Higher Plus

15th November Show $x^4 - 7x^3 = 6$	Corbettmaths
has a solution between 7 and 8	
Prove that the product of two consecutive even numbers is a multiple of 4.	
Solve $3x^2 - 19x - 14 < 0$	
D N D D D D D D D D D D D D D D D D D D	Show DE is parallel to MN
ODE is a triangle M is the midpoint of OD N is the midpoint of OE	
$ \overrightarrow{OM} = a \overrightarrow{ON} = b $	

© Corbettmaths 2016 www.corbettmaths.com

Name: 5-a-day Higher Plus

Iotii Noveiliber	
Show	Corbettmαths
$x^4 - 7x^3 = 6$	
has a solution between 7 and 8	
Prove that the product of two consecutive even numbers is a multiple of 4.	
Solve $3x^2 - 19x - 14 < 0$	
M N N N N N N N N N N N N N N N N N N N	Show DE is parallel to MN
ODE is a triangle M is the midpoint of OD N is the midpoint of OE	
$ \begin{array}{c} \overrightarrow{OM} = a \\ \overrightarrow{ON} = b \end{array} $	

© Corbettmaths 2016 www.corbettmaths.com