Video 353a on www.corbettmaths.com

Examples

Click here

Scan here

Workout

Question 1: The vectors **a**, **b**, **c** and **d** are shown on the grid.

- (a) Write **a** as a column vector
- (b) Write **b** as a column vector
- (c) Write **c** as a column vector
- (d) Write **d** as a column vector

Question 2: On a grid, draw and label the following vectors.

(a)
$$\mathbf{a} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
 (b) $\mathbf{b} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ (c) $\mathbf{c} = \begin{pmatrix} -3 \\ -7 \end{pmatrix}$ (d) $\mathbf{d} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}$

(b)
$$\mathbf{b} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

(c)
$$\mathbf{c} = \begin{pmatrix} -3 \\ -7 \end{pmatrix}$$

(d)
$$\mathbf{d} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}$$

(e)
$$\mathbf{e} = \begin{pmatrix} 8 \\ -1 \end{pmatrix}$$
 (f) $\mathbf{f} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}$

(f)
$$\mathbf{f} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}$$

Question 3: Shown on the grid is the vector **a**

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

- Draw the vector 2a on the grid. (a)
- Write 2a as a column vector (b)
- (c) Draw the vector 3a on the grid.
- (d) Write 3a as a column vector
- Write 5a as a column vector (e)

Question 4: Given
$$\mathbf{a} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -9 \\ -7 \end{pmatrix}$

Write the following as column vectors

- (a) 3**a**
- (b) 2**b**

- (c) 5c (d) $\frac{1}{2}a$ (e) $\frac{1}{4}b$

Video 353a on www.corbettmaths.com

Question 5: Shown on the grid are vectors \mathbf{a} , $-\mathbf{a}$, \mathbf{b} and $-\mathbf{b}$

- (a) Write **a** as a column vector
- Write -a as a column vector (b)
- Write **b** as a column vector
- (d) Write -b as a column vector
- Question 6: Given $\mathbf{a} = \begin{pmatrix} 2 \\ 11 \end{pmatrix}$ $\mathbf{b} = \begin{pmatrix} -8 \\ 3 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -4 \\ -6 \end{pmatrix}$

Write the following as column vectors

$$(d) -2a$$

(b)
$$-\mathbf{b}$$
 (c) $-\mathbf{c}$ (d) $-2\mathbf{a}$ (e) $-4\mathbf{b}$ (f) $-\frac{1}{2}\mathbf{b}$

Question 7: Shown on the grid are the vector \mathbf{a} , \mathbf{b} and $\mathbf{a} + \mathbf{b}$

- (a) Write **a** as a column vector
- (b) Write **b** as a column vector
- (c) Write $\mathbf{a} + \mathbf{b}$ as a column vector

Question 8: Given
$$\mathbf{a} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ $\mathbf{d} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ and $\mathbf{e} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$

Work out the following as column vectors

(a)
$$\mathbf{a} + \mathbf{b}$$

(b)
$$\mathbf{b} + \mathbf{c}$$

(c)
$$\mathbf{a} + \mathbf{c}$$
 (d) $\mathbf{c} + \mathbf{d}$

(e)
$$\mathbf{b} + \mathbf{e}$$

(f)
$$\mathbf{d} + \mathbf{a}$$

(g)
$$e + d$$

(e)
$$b + e$$
 (f) $d + a$ (g) $e + d$ (h) $2a + b$

(i)
$$3c + b$$
 (j) $a + 5b$ (k) $4b + 3c$ (l) $7c + d$

(i)
$$a + 5h$$

(1)
$$7c + d$$

$$(m)$$
 $a + 2e$

(n)
$$8e + 3d$$

(o)
$$a + c + e$$

(m)
$$\mathbf{a} + 2\mathbf{e}$$
 (n) $8\mathbf{e} + 3\mathbf{d}$ (o) $\mathbf{a} + \mathbf{c} + \mathbf{e}$ (p) $2\mathbf{b} + 3\mathbf{d} + 10\mathbf{e}$

Video 353a on www.corbettmaths.com

Question 9:
$$\mathbf{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

Shown on the grid are the vector \mathbf{a} , $-\mathbf{b}$ and $\mathbf{a} - \mathbf{b}$

Write down the vector $\mathbf{a} - \mathbf{b}$ as a column vector.

Question 10: Given
$$\mathbf{a} = \begin{pmatrix} 12 \\ 15 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$ $\mathbf{d} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ and $\mathbf{e} = \begin{pmatrix} -8 \\ -9 \end{pmatrix}$

Work out the following as column vectors

- (a) a – b
- (b) **a c**
- (c) $\mathbf{b} \mathbf{c}$ (d) $\mathbf{c} \mathbf{b}$

- (e) a d (f) e b (g) e d (h) 3a b
- (i)

- 2c 2b (j) 6b 4a (k) 3d 4b (l) 7e 10d

Question 11:
$$\mathbf{a} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 8 \\ -1 \end{pmatrix}$

Work out $2\mathbf{a} + \mathbf{b}$ as a column vector

Apply

Question 1: Mark has been asked to draw the vector $\mathbf{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ What mistake(s) has Mark made?

Question 2: Abby has been asked to draw the vector $\mathbf{b} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$ What mistake(s) has Abby made?

Video 353a on www.corbettmaths.com

Question 3: The vectors **a** and **b** are shown on the grid.

- (a) On the grid, draw the vector -2a
- (b) On the grid, draw the vector $\mathbf{a} + \mathbf{b}$
- (c) Work out $3\mathbf{a} + 4\mathbf{b}$ as a column vector

Question 4:
$$\mathbf{a} = \begin{pmatrix} -5 \\ p \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} q \\ 1 \end{pmatrix}$

Given
$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$$

Work out the values of p and q

Question 5:
$$\mathbf{c} = \begin{pmatrix} -3 \\ q \end{pmatrix}$$
 $\mathbf{d} = \begin{pmatrix} p \\ 2 \end{pmatrix}$

Given
$$4\mathbf{d} - \mathbf{c} = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$$

Work out the values of $\,p\,$ and $\,q\,$

Answers

Click here

Scan here