26th April Higher Pl	5-a-day
Show the equation $3 x^{3}+7 x=5$ has a solution between 0 and 1	Corbettmoths
Show that $3 x^{3}+7 x=5$ can be rearranged to give $x=\frac{5}{7}-\frac{3 x^{3}}{7}$	
Starting with $x_{0}=0$ use the iteration formula $x_{n+1}=\frac{5}{7}-\frac{3 x_{n}^{3}}{7}$ three times to find an estimate for the solution to $3 x^{3}+7 x=5$	
Here is a sketch of $y=2 x^{2}+5 x-12$	Find the equation of the line of symmetry of the graph.
The ratio of A to B is $1: 400$ where 400 is given to the nearest 100 . B is 5×10^{15} correct to one significant figure	Calculate the minimum value of A Give your answer in standard form.

