

2nd August Higher Pl	5-a-day
Here is a sketch of $y=\cos (x)$ Write down the coordinates of point A and point B	 Corbettm α ths
 Work out an estimate for the distance travelled over the first 12 seconds of the journey. Use 4 strips of equal width.	
Find the coordinates where the line $y=x+8$ and the curve $y=x^{2}+19 x+80$ intersect	
Solve$\frac{8^{4+x}}{4^{5-x}}=0.5$	

3rd August Higher Plus 5-a-day	
Shown is the graph $y=f(x)$	 Corbettm α ths
Sketch (a) $y=f(-x)$ (b) $y=f(x+3)$	
For all values of x $\begin{aligned} & f(x)=x^{2}+5 \\ & g(x)=x-4 \end{aligned}$ Solve $f g(x)=g f(x)$	
 The line I_{1} passes through the points A and B . It has equation $2 x+5 y=18$. M is the midpoint of $A B$. The line I_{2} passes through the origin, O , and M .	Find the equation of line I_{2} Find the area of triangle OAM.

Harry has rounded a number to 10 to one significant figure.

Write down the upper bound and lower bound.

How many students did Hannah survey?

Calculate an estimate of the mean distance travelled

Hannah surveyed students on how far they travel to college.
150 students travelled less than 10km.

The diagram shows the circle $x^{2}+y^{2}=29$ with a tangent at the point $(-5,2)$

Find the equation of the tangent

The tangent crosses the x-axis at the point B and the y-axis at the point C Find the length BC

5th August Higher Plu	5-a-day
Prove algebraically that $0.6 \dot{1} \dot{4}$ can be written as $\frac{304}{495}$	Corbettm α ths
$\overrightarrow{A B}=\binom{6}{-4}$ Write down a vector that is perpendicular to $A B$ and is two thirds of the length of $A B$.	
The population of birds living on an island is decreasing exponentially. Martin has begun to monitor the population each year. Year 6 - Population 8000 Year 8 - Population 4000	What was the population in Year 2?
Two ships, A and B, leave a port at midday. A travels on a bearing of 095° at a speed of $18 \mathrm{~km} / \mathrm{h}$. B travels on a bearing of 113° at a speed of $\mathrm{y} \mathrm{km} / \mathrm{h}$. At 14:00 the distance between A and B is 30 km . Boat B was travelling at a slower speed than boat A Work out y , the speed of boat B.	

| 6th August |
| :--- | :--- |
| Work out |
| $16^{-\frac{3}{4}}$ |

7th August Higher Plus	5-a-day
A and B are similar cuboids volume of A : volume of $B=8: 1000$ Work out surface area of B : surface area of A	Corbettmoths
How many even numbers greater than 40000 can be created using the digits 12589 using each digit once?	
Find the coordinates where the line $x+y=3$ and the curve $x^{2}+3 y=27$ intersect	
$\frac{61}{330} \quad 0.1 \ddot{7} \dot{8} \quad 3^{-2} \quad \frac{19}{110}$ Arrange in order from smallest to largest	
A solid metal cube has a side length of 6 cm to 2 significant figures. The mass of the cube is 3.2×10^{3} grams correct to 2 significant figures.	Work out the upper bound for the density of the metal.

8th August Higher Plus 5-a-day	
327 people were surveyed about which countries they had visited. A are people who have visited Austria. B are people who have visited Belgium.	Corbettmoths
A person is chosen at random. Work out the probability that they have been to Belgium	One of the people who has been to Austria is chosen at random. Work out the probability that they have not been to Belgium
Simplify $(\sqrt{32}+7 \sqrt{2})^{2}$	
	$\angle A C B$ is an obtuse angle. Find the size of angle $\angle A C B$
Factorise $6 x^{2}-35 x y+49 y^{2}$	

11th August Higher Plus	5-a-day
 Here is a velocity-time graph for 6 seconds of a journey.	Corbettmoths Work out an estimate for the distance travelled over 6 seconds. Use 3 strips of equal width.
Make h the subject of $\sqrt{\frac{r+h}{4 r h}}=V$	
Find the equation of the line that is perpendicular to $2 x+3 y=4$ and passes through the point $(9,0)$	
Solve $8^{4 x+1}-16^{x-1}=0$	

12th August Higher Plus 5-a-day	
Write as a fraction $64^{-\frac{2}{3}}$	Corbettm α ths
Aisha saves some of her pocket money each week. She saves 8 p in week 1 , 16 p in week 2 , 26 p in week 3 , $38 p$ and so on for 20 weeks.	Find the amount she saves in week 20.
	The area of the triangle is $90 \sqrt{3} \mathrm{~cm}^{2}$ Work out the value of x.
The circle C has equation $x^{2}+y^{2}=4$ The circle is reflected in the line $y=2$ to give circle D Circle D is translated by the vector $\binom{-1}{0}$ to give circle E	Draw a sketch of circle E Write down the coordinates of the centre of circle E .

14th August Higher Plu	s 5-a-day
Simplify fully $\frac{6}{(x-5)(x-3)}+\frac{x}{x-3}$	Corbettmoths
A, B and C are points on the circle, centre 0 . RS is a tangent to the circle at A. Angle BCA is 6° larger than angle ABC.	Show angle OAC is $96^{\circ}-x$
A is directly proportional to the cube root of B. B is increased by 60%. Work out the percentage increase in A.	
The distance between the points $(1,2)$ and $(16, p)$ is 17. Find the possible values of p.	

15th August Higher Pl	s 5-a-day
Work out $\left(\frac{8}{27}\right)^{-\frac{2}{3}}$	Corbettmoths
Bag A contains $2 x$ coins Bag B contains 7x coins 45 coins are taken from Bag B and put into Bag A The ratio of coins in Bag A to Bag B is now 11:25	Work out the total number of coins.
Here is quadrilateral $A B C D$ $A B C D$ is reflected in the line $x=-1$ followed by a reflection in the line $y=-x$ followed by a rotation of 180° about $(-1,-1)$ Which of the vertices are invariant?	
Make c the subject of $\frac{3}{a b c}=8-\frac{7}{a b}$	

Expand and simplify
$(3+\sqrt{2})(1-\sqrt{2})$

Work out the length of arc BDC
B, C and D are points on a circle of radius 8 cm .
$A B$ and $A C$ are tangents to the circle.
$A O=11 \mathrm{~cm}$
Work out the area of minor sector BOC

The area of the rectangle is greater than $10 \mathrm{~cm}^{2}$

$$
(2 x-1) \mathrm{cm}
$$

Work out the range of possible values of x

18th August Higher	s 5-a-day
Factorise $8 x^{2}+14 x-15$	Corbettm α ths
Find the nth term of the quadratic sequence with the first four terms $\begin{array}{lllll} 10 & 33 & 64 & 103 & \ldots . \end{array}$	
$(x+2)\left(x^{2}-a x-4\right)$ is expanded and simplified The coefficient of x is 6 times the coefficient of x^{2}	Find a
A, B, C and D are points on a circle, centre 0 .	Chord $A B=5 \mathrm{~cm}$ Angle $\mathrm{AOB}=120^{\circ}$ Angle COD $=85^{\circ}$ Find the area of the shaded region.

19th August Higher Plus 5-a-day	
There are 12 students in Class A and 15 students in Class B. Class A and Class B sat a test. The mean score for the 12 students in Class A was 30 The mean score for all 27 students was y	Find an expression in terms of y for the mean score for the students in Class B.
	Prove that angle $\mathrm{AOB}=4 \mathrm{x}$ Give reasons for each stage of your working.
A and B are points on the circumference of a circle, centre O . CA is a tangent to the circle. Angle $\mathrm{CAB}=2 \mathrm{x}$	
	Find the area of the circle
The diagram shows the circle $x^{2}+y^{2}=40$ with a tangent at the point $(2,6)$	Find the equation of the tangent

20th August Higher Plus 5-a-day		
		Corbettmoths
$\left(\frac{64}{729}\right)^{-\frac{2}{3}}$		
The cylinder has a surface area of $972 \pi \mathrm{~cm}^{2}$ Find x		
Simplify $\frac{x-1}{2 x^{3}}+\frac{x+4}{x^{4}} \div \frac{4 x+16}{x}$		
In bag 1, there are 3 apples and 1 orange. In bag 2, there are 2 apples and 3 oranges. A piece of fruit is picked at random from bag 1 and placed into bag 2. Then a piece of fruit is picked at random from bag 2 and placed into bag 1. Find the probability that bag 1 does not contain 3 apples and 1 orange.		

21st August Higher Plus 5-a-day	
	Find x
Solve $\frac{(4 x+3)(x+2)}{x+1}=3$	
Grace makes chocolate and lemon cupcakes in the ratio 11:2. Some of the cupcakes have sprinkles and the rest do not. The ratio of chocolate cupcakes with sprinkles to without sprinkles is $3: 4$ The ratio of lemon cupcakes with sprinkles to without sprinkles is $5: 2$ Work out what fraction of the cupcakes have sprinkles.	
Peter has 18 pieces of fruit in a bowl. There are 9 apples, 6 oranges and 3 bananas. He picks at random three pieces of fruit from the bowl.	Work out the probability that the three pieces of fruit are not the same type.

22nd August Higher Pl	s 5-a-day
Given $2^{y}=\frac{1}{16}$ Find y	Corbettmoths
Show the equation $x^{2}-5 x+1=0$ can be written in the form $x=5-\frac{1}{x}$	
Starting with $\mathrm{x}_{0}=3$, use the iteration formula $x_{n+1}=5-\frac{1}{x_{n}}$ twice to find an estimate of the solution of $x^{2}-5 x+1=0$	
A logo is made from a square and three semi-circles. The area of the logo is ky^{2} Find the exact value of k.	
A solid metal cube has side length 8 cm . The density of the metal is $11.3 \mathrm{~g} / \mathrm{cm}^{3}$ The cube is melted down and the metal is used to make spheres of radius 1 cm . As many spheres as possible are made.	Work out the mass of the metal that is wasted.

23rd August Higher Plus 5-a-day	
	Corbettmoths Find the area of the triangle in terms of x.
Given $y=\frac{5 \sqrt{3}}{2}$ Write an expression for y^{3}	
The graph shows information about the speed of a train during its journey between two stations, A and B.	The train is halfway between stations A and B at x seconds. Find x
The point $(-5,1)$ is the turning point of the graph of $y=x^{2}+a x+b$ Find a and b	

24th August Higher Plus 5-a-day	
Solve $\mathrm{x}^{2}-8 x+15 \leq 0$	Corbettm α ths
	What are the coordinates of the new position of P when the graph $y=f(x)$ is transformed to the graph of $y=-f(x)$?
Rosie wants to estimate the number of fish that live in a lake. On Friday, she caught 60 fish and tagged them. On Sunday, she caught 80 fish and Rosie found that 5 had been tagged.	Work out an estimate for the number of fish in the lake.
The cost of two TVs are in the ratio $\mathrm{x}: \mathrm{y}$ When both prices are increased by $£ 40$, the ratio is $13: 20$ When both prices are decreased by $£ 100$, the ratio is $8: 15$ Find the values of x and y	

| 26th August | |
| :--- | :--- | :--- |
| James is creating a password.
 He used 2 lowercase letters then 5
 digits.
 He does not repeat any letter or digit.
 How many possible codes can James 5-a-day
 create? | |
| $\sqrt{45}+x \sqrt{20}=7 \sqrt{5}$ | |
| Find x | |

28th August Higher Plus 5-a-day			
Write as a power of 2 Corbettmoths $\sqrt[4]{32}$			
Without using a calculator, work out$0 . \dot{7}+2^{-2} \div 0.1 \dot{4} \dot{1}$			
In year 7 there are 20% more students who do not wear glasses than do. $\frac{3}{20}$ of the students who do not wear glasses are left handed of the students who wear glasses are left handed			43 of the students in year 7 are left handed. Find how many students are in year 7
The histogram shows the ages of 257 people who visited a library yesterday.			Calculate an estimate of the mean Calculate an estimate of the median

29th August Higher Plus 5-a-day	
	Corbettmoths Work out an estimate for the acceleration of the car at $t=1$. Work out an estimate for the acceleration of the car at $t=9$.
Write down the coordinates of the minimum point of the curve with equation $y=2 x^{2}-6 x+11$	
OABC is a parallelogram $\overrightarrow{O A}=\mathbf{a} \quad \overrightarrow{O C}=\mathbf{c}$ Y is the midpoint of $A C$ OAD is a straight line where $\mathrm{OA}: \mathrm{AD}=\mathrm{m}: 1$	Given that $\overrightarrow{Y D}=7 \mathbf{a}-\frac{1}{2} \mathbf{c}$ Find the value of m

| 30th August |
| :--- | :--- | :--- |
| APB is a straight line. |
| AP: $\mathrm{PB}=5: 2$ |

31st August Higher Plus 5-a-day	
C has coordinates $(-6,2)$ D has coordinates ($-2,-6$) E has coordinates $(1,3)$ Find the equation of the line perpendicular to CD and passing through E.	Give your answer in the Corbettmoths form $a x+b y+c=0$, where a, b and c are integers.
The speed limit on a road is $50 \mathrm{~km} / \mathrm{h}$ Driving at a constant speed, it took Sam 60 seconds, correct to the nearest 5 seconds, to drive along a section of the road that is 780 m long, correct to 2 significant figures.	Could Sam have broken the speed limit while driving along the section of road?
	Calculate the area of the triangle
Find the coordinates of the points where the line $x+5 y=37$ and the curve $y=x^{2}+x+2$ meet.	
Find the maximum value of $\frac{1}{x^{2}+8 x+20}$	

