

2nd January Higher Plus 5-a-day			Corbettmoth
Solve the simultaneous equations $\begin{aligned} & y=x^{2}-1 \\ & x=5-y \end{aligned}$			
Work out $\sqrt{200}+\sqrt{50}$			
Sketch $y=\sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$		$\begin{array}{ll} 180 & 270 \end{array}$	360
Solve $x^{2}-2 x-15>0$			
Find the nth term of $10,12,16,22,30 .$			

3rd January Higher P	
Work out $25^{-0.5}$	Corbettmoths
Prove $(5 n+2)^{2}-(5 n-1)^{2}$ is always a multiple of 3 , if n is a positive integer.	
Rationalise the denominator $\frac{\sqrt{3}}{\sqrt{2}}$	
Find the equation of the line that is perpendicular to $3 x+y=8$ and passes through the point $(1,5)$	
Simplify $\left(81 x^{8}\right)^{-\frac{3}{4}}$	

4th January Higher P	5-a-day
Solve the simultaneous equations $\begin{aligned} & x+y=3 \\ & x^{2}+y^{2}=5 \end{aligned}$	Corbettm α ths
Ramy saves some of his pocket money each week. He saves 10p in week 1 , 16 p in week 2,22 p in week 3 and so on for 40 weeks.	Find the amount he saves in week 40.
Calculate his total savings over the 40 weeks.	
Rationalise the denominator of $\frac{\sqrt{5}}{\sqrt{3}+2}$	
	Prove that the angle in a semi-circle is always 90°

5th January	
Express $(8+\sqrt{5})^{2}$ in the form	
$a+b \sqrt{5}$	
Find the minimum value of $x^{2}+6 x+20$ and the value of x for which it occurs. 	

| 6th January |
| :--- | :--- | :--- |
| Solve the simultaneous equations |
| $2 y-x+3=0$ |
| $x^{2}+x y=0$ |

7th January Higher	s 5-a-day
Expand and simplify $(x+2)(x+5)(2 x-1)$	Corbettmoths
The line l_{1} has equation $y=4 x+3$ The line I_{2} has equation $5 x+2 y-9=0$ Find the gradient of line I_{2}	Find the coordinates of the point of intersection of I_{1} and l_{2}
Given that $16^{x}=4^{10-x}$ Find the value of x	
	Show the area of ABCD is $1212 x^{2}$

9th January Higher Plus 5-a-day	
Simplify	Corbettm α ths
$18 x^{\frac{5}{4}}$	
$6 x$	
Find the equation of the straight line passing through $\mathrm{B}(-2,8)$ and $C(1,0)$. Give your answer in the form $a x+b y+c=0$ where a, b and c are integers.	
Express $3 x^{2}+12 x+13$ in the form $a(x+b)^{2}+c$	
	Find the vector $\overrightarrow{O B}$ in terms of \mathbf{a} and \mathbf{b}
AOB is a triangle. P is a point on $A O$.	Q is the midpoint of $O B$. B is the midpoint of $A C$. Show PQC is a straight line.
$\begin{aligned} & \overrightarrow{A B}=2 \mathbf{a} \quad \overrightarrow{A O}=6 \mathbf{b} \\ & A P: P O=2: 1 \end{aligned}$	

10th January Higher Plus 5-a-day	
Given $2^{y}=\frac{1}{8}$ Find y	Corbettm α ths
Show the equation $x^{2}-4 x+1=0$ can be written in the form $x=4-\frac{1}{x}$	
Starting with $\mathrm{x}_{0}=3$, use the iteration formula $x_{n+1}=4-\frac{1}{x_{n}}$ twice to find an estimate of the solution of $x^{2}-4 x+1=0$	
$A B C$ is a triangle. M lies on $B C$ such that $B M=\frac{4}{5} B C$ Express these vectors in terms of \mathbf{x} and y	Express these vectors in terms of \mathbf{x} and y $\overrightarrow{B C}$ $\overrightarrow{B M}$ $\overrightarrow{A M}$

12th January Higher Plu	s 5-a-day
Solve the simultaneous equations $\begin{aligned} & x=3 y+6 \\ & 3 x y=24-x \end{aligned}$	Corbettmoths
Write $x^{2}+8 x+17$ in the form $(x+a)^{2}+b$	Find the coordinates of the turning point of $y=x^{2}+8 x+17$
	Calculate the length BC.
Below is the speed-time graph for the journey between two stops on a miniature locomotive	Work out an estimate of the acceleration of the locomotive at 20 seconds. Work out an estimate for the distance travelled by the locomotive during the journey.

13th January Higher Plus 5-a-day	
$6 x+4 y=7 y-x$ Find the ratio $\mathrm{x}: \mathrm{y}$	Corbettmoths
Solve $x^{2}-5 x+4>0$	
	Find x
 The average speed from 0 to t seconds was $5.96 \mathrm{~m} / \mathrm{s}$	Find t Find the rate of deceleration from 12 to t seconds.

14th January Higher Plus 5-a-day	
Find the value of $32^{\frac{2}{5}}$	Corbettmoths
$\begin{aligned} & \overrightarrow{A C}=\mathbf{a}+3 \mathbf{b} \quad \overrightarrow{C B}=2 \mathbf{b}-\mathbf{a} \\ & \overrightarrow{D E}=\frac{1}{5} \mathbf{a} \end{aligned}$	Find the vector $\overrightarrow{A B}$ $\overrightarrow{E C}=\frac{1}{5} \overrightarrow{C B}$ Prove DC is parallel to $A B$
Expand and simplify $(x+2)(3 x-1)^{2}$	
Write $\frac{4}{\sqrt{5}}-\sqrt{2 \frac{2}{9}}$ in the form $\mathrm{k} \sqrt{ } 5$	

15th January Higher Pl	5-a-day
Factorise completely $x^{3}-25 x$	Corbettmoths
The square of w is 5 Write down the value of w^{5}	
	Find the probability of B given A.
There are 9 students in Class A and 16 students in Class B. Class A and Class B sat a test. The mean score for the 9 students in Class A was y The mean score for all 25 students was 72	Find an expression, in terms of y, for the mean score for the students in Class B.
A curve has equation $y=a x^{2}+b x+c$ The curve crosses the x-axis at $(3,0)$ and (4, 0) The curve crosses the y-axis at $(0,12)$	Find the values of a, b and c.

16th January Higher P	s 5-a-day
Simplify $\left(125 x^{6}\right)^{\frac{2}{3}}$	Corbettmoths
A bag contains 10 sweets. 5 sweets are red. 3 sweets are yellow. 2 sweets are green. Two sweets are taken from the bag without replacement.	Work out the probability that the two sweets are different colours.
w is directly proportional to c squared When $w=16, c=2$ Find the value of c when $w=28 c-49$	
Shown is a right angle triangle. Find the value of x	
	Shown is a rectangular based pyramid. The apex E is directly over the centre of the base. Calculate angle between the face ABE and the base ABCD

| 17th January | Higher Plus 5-a-day |
| :--- | :--- | :--- |
| Simplify fully
 $4 x^{2}-25$ | |
| $6 x^{2}-11 x-10$ | |

18th January Higher Plus 5-a-day	
Rearrange $y+3=x(y+2)$ to make y the subject of the formula.	Corbettm α ths
	$\overrightarrow{A B}=\binom{2}{4}$ Write down a vector that is perpendicular to $A B$ and the twice the length
	Work out $P\left(A^{\prime} \cap D^{\prime}\right)$
Factorise $14 x^{2}+31 x y-10 y^{2}$	
After a reduction of 3% in the original price, a motorbike is sold for $£ 700$. Both of these values are correct to one significant figure.	Calculate the greatest possible original price before the reduction was applied.

The events A and B are mutually exclusive.
$P(A)=0.5$
$P(B)=0.4$
$P(B)=0.4$
Find $P(A \cup B)$

Write in the form $a \sqrt{b}$, where a and b are integers to be found.

Work out the rate at which the pulse is increasing at four minutes. Include units.

Work out the rate at which the pulse is decreasing at seven minutes. Include units.

20th January Higher Plus 5-a-day	
The point $(12,5)$ lies on a circle with centre (0, 0) Write down the coordinates of another three points on the circle.	Corbettmoths
Expand and simplify $(x-3)^{3}$	
	Shown is the curve $y=\sin \left(x+30^{\circ}\right)$ Write down the coordinates of A and B
There are 20 sweets in a box. There are y lemon sweets and the rest of the sweets are orange. Florence takes out two sweets, at random, from the box.	Find an expression, in terms of y, for the probability that Florence takes two lemon sweets.
 Shown is a frustum of a cone that had a perpendicular height of 40 cm	Calculate the surface area of the frustum

21st January	
Express as a single fraction.	
$\frac{1}{2}+\frac{4}{x-2}$	

A cuboid has length $(x+9) \mathrm{cm}$,
The surface area of the cuboid is $400 \mathrm{~cm}^{2}$.

Find the value of x to 1 decimal place.

	Which transformation will have a minimum point of $(-5,2)$?
Shown is the curve with equation $y=f(x)$ The coordinates of the minimum point of the curve are $(5,2)$.	Which transformation will have a minimum point of $(8,2)$?
$\angle \mathrm{DAB}=10^{\circ} \quad \angle \mathrm{DBC}=48^{\circ}$	Find x
$\begin{aligned} & w=\frac{\sqrt{c}}{p} \\ & c=4.24 \text { correct to } 2 \text { decimal places } \\ & p=7.88 \text { correct to } 3 \text { decimal places } \end{aligned}$	By considering bounds, work out the value of w to a suitable degree of accuracy.

(C) Corbettmaths 2021

| 23rd January |
| :--- | :--- | :--- |
| Find the minimum point of the graph |
| $y=x^{2}-6 x+7$ |

24th January Higher Plus 5-a-day	
$f(x)=\frac{a x+3}{4}$ Given $f(7)=6$ Find a	Corbettm α ths
A PE test has two sections, theory and practical. Everyone in a class who took the PE test passed at least one section. 65% passed the theory section and 80% passed the practical section. Show this on a Venn diagram	
	$A B C D$ is a quadrilateral. $A B=8 \mathrm{~cm}, A D=15 \mathrm{~cm}$ and $C D=12 \mathrm{~cm}$. Angle $A D C=78^{\circ}$ and angle $B A C=20^{\circ}$
Calculate the length of AC.	Calculate the area of triangle ABC.
Find the set of values of x for which both $9 x-2<18-x$ and $x^{2}-x \geq 20$	

25th January Higher Plu	5-a-day
Prove that the angles in a triangle add up to 180°. Hint: consider parallel lines.	Corbettm α ths
A boat sails 4 miles North from A to B. Then the boat sails 5 miles North-East from B to C. The boat then sails directly back to A .	How far does the boat sail in total?
Rationalise the denominator of $\frac{2+\sqrt{3}}{\sqrt{5}-1}$	
x is an obtuse angle. Given $\sin (x)=\frac{5}{13}$	Find $\cos (\mathrm{x})$
Expand and simplify $(1+\sqrt{2})(1+\sqrt{3})(2-\sqrt{3})$	

| 26th January | (b) $2 \sqrt{2}$ |
| :--- | :--- | :--- |
| Express in the form 2^{n} | |
| (a) $\frac{1}{16}$ | |
| | |
| | |

27th January	Higher Plus 5-a-day
Write $1.2 \dot{4}$ as a mixed number. Use an algebraic approach and give your answer in its simplest form.	

28th January Higher Plus 5-a-day	
Solve the inequality $5 x^{2}<45$	Corbettm α ths
The box plot shows information about the masses of apples in a box	Jack picks three apples at random, one at a time, replacing each before picking the next. Find the probability that he chooses two over 90 g and one under 75 g .
The minimum point of a quadratic graph in the form $y=x^{2}+a x+b$ is $(-2,-10)$. Find a and b .	
$A B C D$ and MNOP are squares. Prove triangles POD and MAP are congruent.	

29th January Higher Plus 5-a-day	
Shown is the graph of the function $y=f(x)$ Sketch (a) $f(-x)$ (b) $f(x)+3$	
Find the coordinates where the line $2 x-y+3=0$ and the curve $y=x^{2}-x-7$ intersect	
	Find the probability of A given not B .
	Prove the opposite angles in a cyclic quadrilateral add to 180°

30th January Higher Plu	
Make y the subject of the formula $c=w-4 a y^{3}$	Corbettm α ths
The perimeter of sector $A O B$ is 22.81 cm . Find θ	
ξ $\xi=40$ students C = students who own a cat $\mathrm{D}=$ students who own a dog A student is chosen at random. They own a dog. Work out the probability that they own a cat	
A group of 10 people enter a room. Each person shakes hands with all the other people in the room once. How many handshakes are there in total?	

31st January Higher	
Expand and simplify $(2 x+3)^{3}$	Corbettm α ths
Make m the subject of the formula $E=m g h+\frac{1}{4} m v^{2}$	
Calculate the sum of the first 50 odd numbers	
Solve the inequality $12 x^{2}+7 x+1 \leq 0$	
How many regular polygons have integer interior angles?	

