6th January

Corbettmaths

Use factor theorem to show that
$$(x-4)$$
 is a factor of $x^3 + x^2 - 20x$

Let $f(x) = \chi^3 + \chi^2 - 20x$

Solve the simultaneous equations

$$2x + 4y - z = 15 \qquad -\bigcirc$$

$$3x + 8y + z = 44 - \bigcirc$$

$$x + 2y + 2z = 15 \quad -(3)$$

$$(5)$$
 - (4) = -1 y = -1 4

$$4x + 8y - 27 = 30$$

$$2 + 2y + 22 = 15$$

$$5x + 10y = 45$$

Sub
$$y=7$$
 into 5

Sub $y=7$ into 5

Sub $x=-5$, $y=7$ into 0

-10 + 28 - $z=-5$
 $z=-3$
 $z=3$

A curve has equation $y = x^2 + 2x$

Find the gradient of the normal to the curve at the point (1, 3)

$$z=1$$
 $\frac{dy}{dx}=4$

gradient of rurnal = -4

A circle has equation $(x + 7)^2 + (y - 6)^2 = 49$

Is the point (-4, 12) inside or outside the circle?

Centre
$$(-7,6)$$
rudius is 7
$$\sqrt{3^2+6^2} = \sqrt{45}$$

$$\sqrt{45} < 7$$

$$\therefore insude circle$$