$$
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 \\
\sin ^{2} \theta & =1-\cos ^{2} \theta \\
2 \sin ^{2} \theta & =2-2 \cos ^{2} \theta
\end{aligned}
$$

$$
\frac{2}{7,9} \times 5 \times 4 \times 3 \times 2=240
$$

$$
6 \times 5 \times 4 \times 3 \times 2 \times 1=\frac{720}{960}+
$$

Given that $y=5 x-x^{2}$
Work out the coordinates of the point at
which the gradient of the curve is -1

$$
\begin{aligned}
\frac{d y}{d x}= & 5-2 x \\
5-2 x & =-1 \\
x & =3
\end{aligned}
$$

$$
(3,6)
$$

Work out AB

$$
\begin{aligned}
A \underline{B} & =\left(\begin{array}{rr}
3 & -2 \\
5 & 1
\end{array}\right)\left(\begin{array}{rr}
-7 & 1 \\
0 & 4
\end{array}\right) \\
& =\left(\begin{array}{cc}
-21 & -5 \\
-35 & 9
\end{array}\right)
\end{aligned}
$$

Work out BA

$$
\begin{aligned}
\underline{B} \underline{A} & =\left(\begin{array}{rr}
-7 & 1 \\
0 & 4
\end{array}\right)\left(\begin{array}{cc}
3 & -2 \\
5 & 1
\end{array}\right) \\
& =\left(\begin{array}{rr}
-16 & 15 \\
20 & 4
\end{array}\right)
\end{aligned}
$$

