\qquad

4th August	
The lines $y=x-7$ and $y=4 x-19$ intersect at the point A. The point B has coordinates $(-2,11)$ At A $\begin{aligned} x-7 & =4 x-19 \\ 12 & =3 x \\ x & =4 \quad A(4,-3) \end{aligned}$	Find the equation of the line that passes through A and B . $\begin{aligned} & m=-\frac{14}{6}=-\frac{7}{3} \\ & y-11=-\frac{7}{3}(x+2) \\ & y=-\frac{7}{3} x+\frac{19}{3} \end{aligned}$
	Find the distance between A and B . $\begin{aligned} A B & =\sqrt{6^{2}+14^{2}} \\ & =\sqrt{232}(15.23) \end{aligned}$
Solve $5 \sin x=8 \cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$	$\begin{aligned} \tan x & =\frac{8}{5} \\ x & =58.0^{\circ}, 238.0^{\circ} \end{aligned}$
	Calculate the length of AC. (non-calculator) $\begin{aligned} A C^{2} & =(4 \sqrt{2})^{2}+(3 \sqrt{2})^{2}-2(4 \sqrt{2})(3 \sqrt{2}) \\ & \cos 120^{\circ} \\ & =32+18-48 \cos 120^{\circ} \\ & =50+24 \\ A C & =\sqrt{74} \end{aligned}$
Prove that $\frac{\sin x-\sin ^{3} x}{\cos ^{3} x} \equiv \tan x$	$\begin{aligned} \text { LHS } & =\frac{\sin x\left(1-\sin ^{2} x\right)}{\cos x \cdot \operatorname{ces}^{2} x} \\ & =\tan x \end{aligned}$

