25th July

4

Shown below is the graph of y = f(x)

Corbettmaths

The point (-3, 2) is a minimum point and the point (1, 6) is a maximum point.

Write down the range of values of ${\bf x}$ for which $f({\bf x})$ is a decreasing function.

$$x < -3, x > 1$$

Solve the simultaneous equations

$$x + y + z = 1 \tag{1}$$

$$4x - 3y + 4z = 32$$
 (2)

$$x - 10y - 2z = 27$$
 (3)

(1)
$$\times 4 - (2)$$
 $7y = -28 \Rightarrow y = -4$
(1) $\times 2 + (3)$ $3x - 8y = 29$
 $\Rightarrow 3x = -3 \Rightarrow x = -1$
 $-5 + z = 1 \Rightarrow z = 6$

Solve $2sin^2\theta + 3cos\theta = 3$

for $0^{\circ} < \theta < 360^{\circ}$

$$2(1-\cos^{2}\theta) + 3\cos\theta = 3$$

$$2 - 2\cos^{2}\theta + 3\cos\theta = 3$$

$$0 = 2\cos^{2}\theta - 3\cos\theta + 1$$

$$0 = (2\cos\theta - 1)(\cos\theta - 1)$$

$$\cos\theta = \frac{1}{2}, \cos\theta = 1$$

$$0^{\circ} < 9 < 360^{\circ} \Rightarrow \theta = 60^{\circ}, 300^{\circ}$$