17th June	
How many points of intersection does the circle $x^{2}+y^{2}=9$ have with the line $x+y=6$?	$\begin{aligned} & x+y=b \Rightarrow y=b-x \quad \text { Corbettmaths } \\ & x^{2}+(b-x)^{2}=9 \\ & x^{2}+36-12 x+x^{2}=9 \\ & 2 x^{2}-12 x+27=0 \\ & b^{2}-4 a c=12^{2}-4 \times 2 \times 27=-72<0 \\ & \Rightarrow \text { None. } \end{aligned}$
The transformation matrix $\left(\begin{array}{cc}b & -2 \\ -1 & 3\end{array}\right)$ maps the point $(5,1)$ onto the point $(16, c)$ Find b and c	$\begin{aligned} & \left(\begin{array}{cc} b & -2 \\ -1 & 3 \end{array}\right)\binom{5}{1}=\binom{16}{c} \\ & 5 b-2=16 \Rightarrow b=\frac{18}{5} \\ & -2=c \end{aligned}$
Solve $\cos \theta=-0.11$ for $0^{\circ} \leq \theta \leq 360^{\circ}$	$\theta=96.3^{\circ}, 263.7^{\circ}$
	Find the coordinates of the point Q. $\begin{aligned} & \overrightarrow{P R}=\binom{32}{-16} \\ & \begin{aligned} \overrightarrow{O Q}=\overrightarrow{O P}+\frac{2}{5} \overrightarrow{P R} & =\binom{-6}{11}+\frac{2}{5}\binom{32}{-16} \\ & =\binom{\frac{34}{5}}{\frac{23}{5}} \quad Q(6 \cdot 8,4 \cdot 6) \end{aligned} \end{aligned}$

