N	a	n	16	э:
		•••		

17th June	B		
How many points of intersection does the circle $x^2 + y^2 = 9$ have with the line $x + y = 6$?	$\begin{array}{l} x + y = b = y = b - x & \text{Corbettmaths} \\ x^2 + (b - x)^2 = 9 \\ x^2 + 36 - 12x + x^2 = 9 \\ 2x^2 - 12x + 27 = 0 \\ b^2 - 4ac = 12^2 - 4x2x27 = -72 < 0 \\ = \frac{12^2 - 4x2x27}{12x + 27} = -72 < 0 \end{array}$		
The transformation matrix $\begin{pmatrix} b & -2 \\ -1 & 3 \end{pmatrix}$ maps the point (5, 1) onto the	$\binom{b}{-1} \binom{-2}{3}\binom{5}{1} = \binom{16}{c}$ $5b-2 = 16 \implies b = \frac{18}{15}$		
point (16, <i>c</i>)	-2 = c 5		
Find b and c			
	•		
Solve $cos\theta = -0.11$ for $0^{\circ} \le \theta \le 360^{\circ}$	$\theta = 96.3^{\circ}, 263.7^{\circ}$		
P(-6, 11) Q D(26, 5)	Find the coordinates of the point Q. $\overrightarrow{PR} = \begin{pmatrix} 32\\ -16 \end{pmatrix}$		
R (20,-5)	$\vec{D}\vec{Q} = \vec{O}\vec{P} + \frac{2}{5}\vec{P}\vec{R} = \begin{pmatrix} -6\\ 11 \end{pmatrix} + \frac{2}{5} \begin{pmatrix} 32\\ -16 \end{pmatrix}$		
PQ : PR = 2 : 5	$= \begin{pmatrix} \frac{34}{5} \\ \frac{23}{5} \end{pmatrix} \underline{Q(6\cdot8, 4\cdot6)}$		

© Corbettmaths 2019

www.corbettmaths.com