
12th October

Solve the inequality
$$\frac{3-8x}{9} > -14$$

$$3-8x>-126$$
 $129>8x$
 $x<\frac{129}{8}$

Corbettmaths

The lines LM and NP are perpendicular The line NP has equation 2y - 4x = 1 A is the point with coordinates (1.4, 3.3)

Find the area of triangle ABC.

At B
$$2y-40=1 \Rightarrow y=20.5$$

NP: $y=2x+\frac{1}{2} \Rightarrow m_{\perp}=-\frac{1}{2}$
LM: $y-3.3=-\frac{1}{2}(x-1.4)$
At C $y-3.3=-\frac{1}{2}(10-1.4)$
 $\Rightarrow bc=21.5$
Area = $\frac{1}{2} \times 21.5 \times 8.6 = 92.45$

Prove that every term in the sequence $n^2 - 8n + 28$ is positive

$$n^{2} - 8n + 28 = (n-4)^{2} - 16 + 28$$
$$= (n-4)^{2} + 12 \ge 12 > 0,$$

A curve has equation $y = 20 + 3x^2 - 5x^3$

Find the values of x for which
$$y = 20 + 3x^2 - 5x^3$$
 is an decreasing function.

$$\frac{dy}{dx} = 6x - 15x^{2}$$
Decreasing $\Rightarrow 6x - 15x^{2} < 0$

$$\Rightarrow 3x(2 - 5x) < 0$$

$$\Rightarrow x < 0, x > \frac{2}{5}$$