Name: ____

_

2nd October	
f(x) = 2x - 7 for all values of x	Corbettmaths
Solve $f(x^2) = 4x - 1$	$2x^{2} - 7 = 4x - 1$ $2x^{2} - 4x - 6 = 0$ $x^{2} - 2x - 3 = 0$ (x - 3)(x + 1) = 0 x = -1, 3
AB is a diameter of a circle C. Q is the centre of the circle A has coordinates (-2, 12) and B has coordinates (8, 2).	Find the equation of C Q (3, 7) Q A = $\sqrt{5^2 + 5^2} = \sqrt{50}$ $(x-3)^2 + (y-7)^2 = 50$
	Find the equation of the tangent to C at the point A. $M_{QA} = -\frac{5}{5} = -1$ $M_{\perp} = 1$ Tgt is $y-12 = x+2$ y = x+14
Find the values of x for which $y = 10 + 2x^2 - 4x^3$ is an increasing function.	$\frac{dy}{dx} = 4x - 12x^{2}$ Incr => $4x - 12x^{2} > 0$ 4x(1 - 3x) > 0 $0 \le x \le \frac{1}{3}$.
Describe fully the single transformation represented by $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$(1, 0) \rightarrow (-1, 0)$ $(0, 1) \rightarrow (0, -1)$ Rotation 180° about $(0, 0)$