2nd October

$f(x)=2 x-7$ for all values of x Solve $f\left(x^{2}\right)=4 x-1$	$\begin{gathered} 2 x^{2}-7=4 x-1 \\ 2 x^{2}-4 x-6=0 \\ x^{2}-2 x-3=0 \\ (x-3)(x+1)=0 \\ x=-1,3 \end{gathered}$
$A B$ is a diameter of a circle C. Q is the centre of the circle A has coordinates $(-2,12)$ and B has coordinates (8, 2).	Find the equation of C $\begin{aligned} & Q(3,7) \\ & Q A=\sqrt{5^{2}+5^{2}}=\sqrt{50} \\ & (x-3)^{2}+(y-7)^{2}=50 \end{aligned}$
	Find the equation of the tangent to C at the point A. $\begin{aligned} & m_{Q A}=-\frac{5}{5}=-1 \\ & m_{\perp}=1 \\ & \text { Tgt is } \quad y-12=x+2 \\ & \quad y=x+14 \end{aligned}$
Find the values of x for which $y=10+2 x^{2}-4 x^{3}$ is an increasing function.	$\begin{aligned} & \frac{d y}{d x}=4 x-12 x^{2} \\ & \text { Incr } \Rightarrow 4 x-12 x^{2}>0 \\ & 4 x(1-3 x)>0 \\ & 0<x<\frac{1}{3} . \end{aligned}$
Describe fully the single transformation represented by $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$	$\begin{aligned} & (1,0) \rightarrow(-1,0) \\ & (0,1) \rightarrow(0,-1) \end{aligned}$ Rotation 180° about $(0,0)$.

