Name:

Exam Style Questions

Tessellations

E
 Corbettmoths

Equipment needed: Pencil, Ruler and Pen

Guidance

1. Read each question carefully before you begin answering it.
2. Check your answers seem right.
3. Always show your workings

Video Tutorial

www.corbettmaths.com/contents

Video 36

Answers and Video Solutions

1. A regular hexagon is drawn below.

On the grid above, show how the hexagon tessellates.
You should draw at least 8 shapes.
2. A quadrilateral is drawn below.

(a) What is the name of the quadrilateral?
(b) On the grid above, show how the quadrilateral tessellates. You should draw at least 8 shapes.
3. A quadrilateral is drawn below.

(a) What is the name of the quadrilateral?

kite

(1)
(b) On the grid above, show how the quadrilateral tessellates. You should draw at least 8 shapes.
4. A pentagon is drawn on the grid below.

Show how the pentagon will tessellate.
You should draw at least 6 pentagons.
(2)
5. Here is a tessellating pattern made from equilateral triangles.

(a) Write down the size of each interior angle in the equilateral triangle.
(b) Explain why equilateral triangles tessellate.

As each angle is 60°, six angles will fit together at each point to make 360°.
6. Here is a tessellating pattern made from equilateral triangles and squares.

(a) Write down the size of each interior angle in the equilateral triangle.
(b) Write down the size of each interior angle in the square.
(b) Explain why equilateral triangles and squares tessellate can form a pattern that tessellates.
At each point, three triangles and two squares will fit perfectly together, as $(3 \times 60)+(2 \times 90)=360$
7. Shown is a regular pentagon.

(a) What is the size of each interior angle?

$$
540 \div 5=108
$$

James says a tessellating pattern can be formed from using only regular pentagons.

Is he correct? Explain your answer.
As each interior angle is 108°, three regular pentagons at a point would be 324° and not leaving sufficient space for a fourth pentagon
8. Shown is a regular hexagon.

(a) What is the size of each interior angle?

$$
720 \div 6=120^{\circ}
$$

120.

(2)

Emma says a tessellating pattern can be formed from using only regular hexagons.

Is he correct? Explain your answer.
Yes,
Three regular hexagons can fit together perfectly at each point as $3 \times 120=360$
9. Circle the shape that tessellates.
regular heptagon
regular octagon
regular hexagon
regular decagon
(1)

