1st July Higher Plus 5-a-day	
Arrange the following in order, smallest first $\begin{array}{rlr} 25^{-\frac{1}{2}} & \left(\frac{2}{3}\right)^{-2} & 0.1 \\ \frac{1}{5} & \left(\frac{3}{2}\right)^{2}=\frac{9}{4} & 1 / 9 \end{array}$	Corbettm α ths $0.1,25^{-\frac{1}{2}},\left(\frac{2}{3}\right)^{-2}$
	Write down the equation of the line perpendicular to Line 1 and passing through A. $y=-x+4$ Find the shortest distance between Line 1 and A. $\begin{aligned} & y^{2}=3^{2}+3^{2} \\ & y^{2}=18 \\ & y=\sqrt{18}=3 \sqrt{2} \end{aligned}$
The diagram shows a cuboid and a pyramid. The apex I is directly above the centre M , of ABDC .	Calculate the angle between EHI and ACHE $\begin{aligned} \tan y & =\frac{4.5}{4.5} \\ y & =45^{\circ} \\ 90+45 & =135^{\circ} \end{aligned}$

$(x+3)(x+a)(b x-3)$ is expanded to give
$2 x^{3}-x^{2}-15 x+18$
Find a and b .
$a=-2 \quad b=2$

$$
\sqrt{0.9025 x}
$$

w is proportional to \sqrt{x}
x is decreased by 9.75%
Work out the percentage decrease in
w.
\qquadLiquid A
Liquid B has a density of $0.7 \mathrm{~g} / \mathrm{cm}^{3}$ Liquid C has a density of $1.5 \mathrm{~g} / \mathrm{cm}^{3}$ 200 g of liquid $\mathrm{A}, 1 \mathrm{~kg}$ of liquid B and 500 g of liquid C are mixed to make liquid D .

$$
w=k \times \sqrt{x}
$$

$$
=0.95 \sqrt{x}
$$

One solution of a quadratic equation in the form
$y=a x^{2}+b x+c$
is
$x=\frac{3+\sqrt{65}}{4}$
$9-8 c=65$
$-8 c=56$
$c=-7$
$f(x)=10-5 x \quad g(x)=\frac{1}{3} x-1$
Solve $f^{-1}(x)=g^{-1}(x)$
$y=10-5 x$
$y=\frac{1}{3} x-1$
$5 x=10-y$
$3 y=x-3$
$x=\frac{10-y}{5}$
$x=3 y+3$
$f^{-1}(x)=\frac{10-x}{5} \quad g$
$\frac{10-x}{5}=3 x+3$
$10-x=15 x+15$
$-5=16 x$
Find possible values of a, b and c.
$a=2$
$b=-3$
$c=-7$

3 rd July Higher Plus 5-a-day	
Shown is $y=\cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$	Corbettm α ths One solution of $\cos x=0.97$ is $x=14^{\circ}$ Find another solution to $\cos x=0.97$ $360-14=346^{\circ}$
$(x+1)(x+1)(x+9)=\left(x^{2}+2 x+1\right)(x+$	Form an expression for the volume of the cuboid. Expand and simplify the expression. $\begin{aligned} & x^{3}+9 x^{2}+2 x^{2}+18 x+x+9 \\ & x^{3}+11 x^{2}+19 x+9 \end{aligned}$ 9)
The distance between $(-7$, a) and $(5,1)$ is 13 units. $\quad(5,12,13$ triingle) Find two possible values for a.	$\begin{aligned} & h^{2}+12^{2}=13^{2} \\ & h^{2}=169-144 \\ & h^{2}=25 \\ & h=5 \\ & 1+5=6 \quad a=-4 \text { or } 6 \\ & 1-5=-4 \end{aligned}$
The numbers m and n are irrational and are not the same. $\mathrm{m}+\mathrm{n}$ is rational Write down possible values for m and n	$\begin{aligned} n & =8+\sqrt{2} \\ n & =5-\sqrt{2} \\ m+n & =13 \end{aligned}$
The ratio of Isaac's age to Max's age is $x: y$ $\begin{aligned} & 7(x-5)=y-5 \\ & 7 x-35=y-5 \end{aligned}$ Five years ago, the ratio of their ages was 1:7 $7 x-30=y$ In six years time, the ratio of their ages will be 3:10 $\begin{aligned} & 10(x+6)=3(y+6) \\ & 10 x+60=3 y+18 \end{aligned}$	Express x : y in its lowest terms substitute (1) inte (2) $\begin{aligned} 10 x+4 z & =3(7 x-30) \\ 10 x+4 z & =21 x-10 \\ 13 z & =11 x \\ x & =1 z \quad 1 z: 54 \\ y & =54 \\ & z=9 \end{aligned}$

5th July Higher Plus 5-a-day	
Factorise fully $\begin{array}{r} 98-72 x^{2} \quad 2\left(49-36 x^{2}\right) \\ 2(7-6 x)(7+6 x) \end{array}$	Corbettmoths
Sketch $y=\tan x$ for $0^{\circ} \leq x \leq 180^{\circ}$	
	Prove that the angle at the centre is twice the angle at the circumference. $\begin{aligned} & \angle B O A+\angle B O C+\angle A O C=36 C \text { ongles } \\ & \therefore \angle A O C=\angle x+2 y \\ & \text { So } \angle A O C=2 \times \angle A B C \end{aligned}$
A and B are similar cuboids volume of A : volume of $B=27: 125$ Work out surface area of B : surface area of A	$\begin{gathered} \sqrt[3]{27}=3, \sqrt[3]{125}=5 \\ \text { sides: } \\ 3: 5 \\ \text { Area: }: \\ 9: 25 \\ 25: 9 \\ = \end{gathered}$
Solve $x^{2}+4 x-12>0$ $x<-6$ or $x>2$	$\begin{aligned} & (x+6)(x-2) \\ & x=-6 \text { or } x=2 \end{aligned}$

| 6th July |
| :--- | :--- |

(C) Corbettmaths 2021

8th July Higher Plus 5-a-day	
A sequence of numbers is formed by the iterative process $\begin{aligned} & a_{n+1}=\left(a_{n}\right)^{2}-10 \\ & a_{2}=3^{2}-10 \\ & a_{1}=3=-1 \end{aligned}$	Find $\begin{aligned} a_{3} \quad a_{3} & =(-1)^{2}-10 \\ & =1-10 \\ & =-9 \end{aligned}$
$L M$ and $P Q$ are parallel $\begin{array}{ll} \text { Prove } x+y=z \\ \angle M \angle R=\angle L & \\ \angle R P Q=\angle P R A & \begin{array}{l} \text { (ultarnde } \\ \text { angles ar } \\ \text { equal) } \end{array} \\ \angle P R L=x+y \therefore z=x+y \end{array}$	
Ethan has 12 coins. There are three 10p coins and nine 20p coins. Ethan chooses 3 coins at random. Work out the probability that he takes exactly 50 p.	$\begin{aligned} & P(20,20,10)=\frac{9}{12} \times \frac{8}{11} \times \frac{3}{10}=\frac{9}{55} \\ & P(20,10,20)=\frac{9}{12} \times \frac{3}{11} \times \frac{8}{10}=\frac{9}{65} \\ & P(10,20,10)=\frac{3}{12} \times \frac{9}{11} \times \frac{8}{10}=\frac{9}{55} \\ & \frac{27}{55} \end{aligned}$
Solve $\begin{aligned} & 3^{4 x}=27^{5-x} \\ & 3^{4 x}=\left(3^{3}\right)^{5-x} \\ & 4 x=15-3 x \end{aligned}$	$\begin{aligned} 7 x & =15 \\ x & =\frac{15}{7} \end{aligned}$
Find the nth term for the sequence $\begin{array}{ll} 09203348 & a=1 \\ 9111315 & b=6 \\ z z z \end{array}$	$n^{2}+6 n-7$

The graph below shows information on
how an empty container is being filled with water.

Corbettm α th s
How much water is in the container after 120 seconds?

$$
\begin{aligned}
& A: \frac{1}{2}(105+45) \times 80 \\
& \quad=6000 \mathrm{~cm}^{3} \\
& \text { B: } \frac{1}{2} \times 15 \times 65=487.5 \mathrm{~cm}^{3} \\
& 6000-487.5=5512.5 \mathrm{~cm}^{3}
\end{aligned}
$$

10th July Higher Plus 5-a-day	
Factorise fully $\begin{aligned} & 7 x^{2}-28 \\ & 7\left(x^{2}-4\right) \\ & 7(x-2)(x+2) \end{aligned}$	Corbettm α ths
Yasmin creates a 6 digit passcode for her phone such that all the digits are prime numbers. Jack knows that all the digits are prime and he tries to guess the passcode.	What is the probability he guesses correctly? $\begin{aligned} & \text { ctly? } \quad 2,3,5,7 \\ & 4 \times 4 \times 4 \times 4 \times 4 \times 4=4096 \end{aligned}$
$\overrightarrow{O C}=\mathbf{c} \quad \overrightarrow{O D}=\mathbf{d}$ Point P is the midpoint of $O C$ ODE is a straight line such that $O D: O E=2: 3$ The points P, Q and E are in a straight line. $\overrightarrow{O C}=\leq-\underline{d}$	$\overrightarrow{D Q}=k \overrightarrow{D C}$ $\begin{aligned} & \text { Find the value of } k \\ & \overrightarrow{P E}=-0.5 \underline{c}+1.5 d \\ & \overrightarrow{P_{Q}}=-0.5 \leq+d+k c-k d \\ & \overrightarrow{P_{Q}}=(-0.5+k) \leq+(1-k) d \\ & \frac{-0.5}{-0.5+k}=\frac{1.5}{1-k} \\ & -0.5+0.5 k=-0.75+1.5 k \\ & 0.25=k \quad k=\frac{1}{4} \end{aligned}$
The first 4 terms of a sequence are: $\begin{array}{cl} 500,490,475,455 \ldots & b=-25 \\ -100_{-5}^{-15}-20 & c=505 \\ -5 \end{array}$ Which term is the first to be negative?	$-2.5 n^{2}-2.5 n+505$ $14^{\text {th }}$ term is -20

| 11th July | |
| :--- | :--- | :--- |

	12th July Higher Plus 5-a-day	
	The curve A with equation $y=f(x)$ is transformed to curve B with equation $y=f(-x)+1$ The point on A with coordinates $(4,5)$ is mapped to the point P on B	Find the coordinates of P $(-4,6)$
$\begin{aligned} & \frac{5}{10} \times \frac{4}{9} \times \frac{5}{8} \\ & =\frac{5}{36} \end{aligned}$	The straight line L has the equation $4 y=3 x+5 \quad y=\frac{3}{4} x+\frac{5}{4} \quad x \quad y$ The point A has coordinates $(2,-8)$ Find an equation of the straight line that is perpendicular to L and passing through A	$\begin{aligned} & y=-\frac{4}{3} x+c \\ & -8=-\frac{8}{3}+c \\ & c=-\frac{16}{3} \end{aligned}$ $y=-\frac{4}{3} x-\frac{16}{3}$
	2 2 2 3 4 5 6 7 7 Tia picks three cards at random, without replacement. She adds the three numbers together to get a score. $\begin{aligned} & \text { EEO } \\ & \text { EOE } \\ & \text { OEE } \end{aligned} \quad 3 \times \frac{5}{36}=\frac{15}{36}$	Find the probability that the score is an odd number. $\begin{gathered} \rho(000)=\frac{5}{10} \times \frac{4}{9} \times \frac{3}{8}=\frac{1}{12} \\ \frac{15}{36}+\frac{1}{12}=\frac{1}{2} \end{gathered}$
	$O A=13 \mathrm{~cm}$ and the $\operatorname{arc} A B=28 \mathrm{~cm}$ Find the area of the shaded segment $\frac{\theta}{360} \times \pi \times 26=28 \quad \theta=123.4063$ sector: $\frac{123.4063}{360} \times \pi \times 13^{2}=182$ Area $A=\frac{1}{2} \times 13 \times 13 \times \sin 123.4 .=70.539$. segment: $111.46 \mathrm{~cm}^{2}$	
	Solve $\begin{aligned} & (1-x)^{2}>\frac{4}{49} \\ & x^{2}-2 x+1>\frac{4}{49} \\ & x^{2}-2 x+\frac{45}{49}>0 \end{aligned}$	$\begin{aligned} & 49 x^{2}-98 x+45>0 \\ & (7 x-5)(7 x-9) \end{aligned}$ $x<\frac{5}{7} \text { or } x>\frac{9}{7}$

\qquad

13th July

Simplify

$\frac{$| $x(x-1)(x+1)$ |
| :--- |
| $x+2$ |$\frac{x^{2}-x(x-1)}{x^{2}-5 x-14}}{(x+2)(x-7)}$

$$
(x+1)(x-7)
$$

$$
\begin{aligned}
& 2 x^{2}=x+6 \\
& 2 x^{2}-x-6=0 \\
& (2 x+3)(x-2)=0 \\
& x=-\frac{3}{2} \text { or } x=2
\end{aligned}
$$

Miss Kelly wants to draw a pie chart to represent the grades obtained by the students.

If a student scored 350 marks or higher, they obtained a grade 9 .

What size should the angle of the sector for grade 9 be in her pie chart?
$\frac{69}{384} \times 360=64.6875^{\circ}$
\qquad

14th July

$511 m$

Write down the equation of the circle

Here is a circle, centre O , and the tangent to the circle at the point $(6,8)$.

$$
\text { griodiact of } O P=\frac{4}{3}
$$

gridiret of turazet $=-\frac{3}{4}$

Work out
$27^{-\frac{2}{3}} \div 0.25$

$$
\frac{1}{9} \div \frac{25}{99}=\frac{11}{25}
$$

$$
x^{2}+y^{2}=10^{2}
$$

or

$$
x^{2}+y^{2}=100
$$

Find the equation of the tangent at the point P.

$$
y=-\frac{3}{4} x+c
$$

$$
8=-\frac{9}{2}+c
$$

$$
c=12.5
$$

$$
y=-\frac{3}{4} x+12.5
$$

15th July Higher Plus 5-a-day	
Find x	$\begin{aligned} & x^{2}+(\sqrt{17})^{2}=(\sqrt{66})^{2} \\ & x^{2}+17=66 \\ & x^{2}=49 \\ & x=7 \mathrm{~cm} \end{aligned}$
Find the length of the side, x . $\begin{aligned} & \frac{x}{\sin 79}=\frac{29}{\sin 75} \\ & x=29.471 \mathrm{~cm} \end{aligned}$	
Factorise $\begin{aligned} & 2 x^{2}+11 x y+15 y^{2} \\ & (2 x+5 y)(x+3 y) \end{aligned}$	
ODEF is a quadrilateral	M is the midpoint of $E F$ Y is a point on $O M$ such that $O Y: Y M=n: 1$ DYF is a straight line. Work out the value of n $\begin{aligned} & \overrightarrow{B y}=-\underline{a}+\frac{n}{n+1}\left(\frac{1}{2} \underline{a}+\frac{3}{2} \underline{b}\right) \\ & \overrightarrow{D y}=\frac{-n-2}{2 n+2} \underline{a}+\frac{3 n}{2 a+2} \underline{b} \end{aligned}$ Since $\overrightarrow{O F}=-\underline{a}+\underline{b}$ $\begin{gathered} \frac{1+2}{2 n+2}=\frac{3 n}{2 n+2} \\ 1+2=3 n \\ 1=1 \end{gathered}$
(Corbettmaths $2021 \overrightarrow{O Y}=\frac{1}{1+1}\left(\frac{1}{2} a+\frac{3}{2} \underline{b}\right)$	

16th July Higher Plus 5-a-day	
Write as a fraction $\begin{aligned} x & =0.2888 \ldots \\ 10 x & =2.888 \ldots \\ 100 x & =28.888 \ldots \\ 90 x & =26 \end{aligned}$	$\begin{aligned} & x=\frac{26}{90} \quad \text { Corbettmoths } \\ & x=\frac{13}{45} \end{aligned}$
$f(x)=\frac{a x+3}{4}$ Given $f(7)=6$ Find a	$\begin{gathered} \frac{7 a+3}{4}=6 \\ 7 a+3=24 \\ 7 a=21 \\ a=3 \end{gathered}$
$3^{x}=9 \sqrt{3} \quad \text { and } \quad 3^{y}=\frac{1}{\sqrt{3}}$ Work out 3^{x-y} $3^{3}=27$	$\begin{aligned} & 3^{x}=3^{2} \times 3^{1 / 2}=3^{2 \frac{1}{2}} \\ & y^{y}=\frac{1}{3^{\frac{1}{2}}}=3^{-\frac{1}{2}} \\ & x=2^{\frac{1}{2}} \quad y=-\frac{1}{2} \\ & x-y=3 \end{aligned}$
Shown are three towns, Antrim, Ballyclare and Carrickfergus.	Find the bearing of Antrim from Carrickfergus. $\begin{gathered} A C^{2}=5^{2}+11^{2}-2 \times 5 \times 11 \times \cos 125 \\ A C=14.46006 \text { miles } \\ \frac{\sin 125}{14.46}=\frac{\sin x}{11} \\ x=38.546^{\circ} \\ 266.45^{\circ} \end{gathered}$

17th July Higher Plus 5-a-day	
Find the nth term for the sequence $\begin{aligned} & 0 \quad 6 \quad 16 \quad 30 \quad 48 \\ & 6^{10}{ }^{14} 4^{18} 8^{4} 4^{4} \quad b=0 \quad c=-2 \end{aligned}$	Corbettm α ths $2 n^{2}-2$
Height $(x \mathrm{~cm})$ Frequency $0<x \leq 10$ 3 $10<x \leq 20$ 7 $20<x \leq 30$ 12 $30<x \leq 40$ 31 $40<x \leq 50$ 27 The table shows the heights of some plants in a greenhouse $\begin{aligned} & \angle Q: 20^{\mu h} \\ & U Q: 60^{\text {th }} \end{aligned}$	Work out the interquartile range $\angle Q$ $20+\frac{10}{12} \times 10=28 \cdot \dot{3}$ U_{Q} $\begin{aligned} & 40+\frac{7}{27} \times 10=42.592 \\ & 42.592-28.3=14.259 \ldots \end{aligned}$ IQR: 14.26 cm
M is a point on $E F$ such that $E M: M F=3: 2 \quad O F=\frac{20}{\cos 40}=26.108$	Calculate the distance AM $\begin{aligned} & A M^{2}=12^{2}+26.108 . .^{2} . \\ & A M=28.73 \mathrm{~cm} \end{aligned}$ Calculate the size of the angle between AM and the base of the prism. $15 \quad \theta=35.736^{\circ}$

$$
\begin{aligned}
& \frac{1}{2}(x-2)(2 x-5) \sin 150 \\
& \frac{1}{2}(x-2)(2 x-5) \times \frac{1}{2} \\
& \frac{1}{4}(x-2)(2 x-5)
\end{aligned}
$$

Given the area of the triangle is greater than $16.5 \mathrm{~cm}^{2}$, show that

$$
2 x^{2}-9 x-56>0
$$

$$
\frac{1}{4}(x-2)(2 x-5)>16.5
$$

xt $\quad(x-2)(2 x-5)>66 \times 4$ $\frac{2 x^{2}-9 x+10>66}{2 x^{2}-9 x-56>0}$
Shown is a sketch of the circle with equation $x^{2}+y^{2}=25$

The circle is translated 3 squares downwards.

Sketch the circle and label the coordinates where the circle crosses both the x-axis and y-axis.

$$
\begin{gathered}
x^{2}+3^{2}=25 \\
x^{2}+9=25 \\
x^{2}=16 \\
x= \pm 4 \\
(4,0) \quad(-4,0)
\end{gathered}
$$

Find the possible range of x.
$(2 x+7)(x-8)$

$x>8$

19th July Higher Plus 5-a-day	
	Corbettm α ths Here is a sketch of $y=9-x^{2}$ The graph is used to model the cross section of a tunnel. Calculate an estimate of the area under the graph. A) $\frac{1}{2}(9+8) \times 1=8.5$ B) $\frac{1}{2}(8+5) \times 1=6.5$ c) $\begin{aligned} \frac{1}{2} \times 1 \times 5 & =\frac{2.5}{17.5} \\ 17.5 \times 2 & =\frac{35}{=} \end{aligned}$
Find the nth term of ${ }_{3}^{-12} 5_{7}^{-4} 3 \ldots$ $\begin{gathered} 2 a=2 \\ a=1 \\ 3 a+b=3 \\ 3+b=3 \\ b=0 \end{gathered}$	$\begin{aligned} & a+b+c=-12 \\ & 1+0+c=-12 \\ & c=-13 \\ & n^{2}-13 \end{aligned}$
Solve the simultaneous equations $\begin{gathered} y=9 x^{2}+11 x+3 \\ 5 x-y+2=0 \\ y=5 x+z \end{gathered}$ $5 x+2=9 x^{2}+11 x+3$	$\begin{aligned} & 0=9 x^{2}+6 x+1 \\ & 0=(3 x+1)(3 x+1) \\ & x=-\frac{1}{3} \\ & y=\frac{1}{3} \end{aligned}$
Simplify fully $\begin{aligned} & \frac{3 x^{2}+20 x-7}{16 x^{2}-1} \div \frac{x+7}{4 x+1} \\ & \frac{(3 x-1)(x+7)}{(4 x-1)(4 x+1)} \times \frac{4 x+1}{x+7} \end{aligned}$	$\frac{3 x-1}{4 x-1}$

20th July	
Convert the following recurring decimal to a fraction $\begin{aligned} 1 . \dot{64} \quad x & =1.646464 \ldots \\ 100 x & =164.6464 \cdots \\ 99 x & =163 \end{aligned}$	$x=\frac{163}{99}$ Corbettmoths
	$\begin{array}{ll} \overrightarrow{O C}=8 \mathbf{a} & \overrightarrow{C A}=-8 \underline{a}+4 \underline{b} \\ \overrightarrow{O A}=4 \mathbf{b} & \overrightarrow{C M}=-4 \underline{a}+2 \underline{b} \\ \overrightarrow{A B}=2 \mathbf{b} & \\ \overrightarrow{O L}=6 \mathbf{a} & \end{array}$ M is the midpoint of $A C$
Work out the vector $\begin{aligned} \overrightarrow{L M} & =\overrightarrow{L \vec{C}}+\overrightarrow{C M} \\ & =2 \underline{a}+(-4 \underline{a}+2 \underline{b}) \\ & =-2 \underline{a}+2 \underline{b} \end{aligned}$	Show that L, M and B lie on a straight line. $\begin{aligned} & \overrightarrow{M D}=-4 \underline{a}+2 \underline{b}+2 \underline{b}=-4 \underline{a}+4 \underline{b} \\ & \overrightarrow{M D}=2 c \vec{M} \therefore \text { parcllel } \end{aligned}$ $\text { as both vectars pass through } M \text {, }$ they are cu-linear.
Express as a single fraction $\begin{array}{r} \frac{b}{a}-\frac{a-1}{b+1} \frac{b^{2}+b}{a(b+1)}-\frac{a^{2}-a}{a(b+1)} \\ \frac{b^{2}+b-a^{2}+a}{a(b+1)} \end{array}$	
Write down the coordinates of the minimum point on the curve $\begin{aligned} y= & x^{2}-6 x-20 \\ & (x-3)^{2}-9-20 \\ & (x-3)^{2}-29 \end{aligned}$	$(3,-29)$

21st July Higher Plus 5-a-day		
Write 128 in the form 4^{n} $\begin{aligned} & \left(2^{2}\right)^{2}=2^{7} \\ & 2^{2 n}=2^{7} \end{aligned}$	$\begin{aligned} 2 n & =7 \\ 1 & =\frac{7}{2} \end{aligned}$ Corbettm α ths $4^{\frac{7}{2}}$	
The line $A B$ has equation $4 x+3 y=9$ Find an equation of the line perpendicular to the line $A B$ that passes through the point $(-3,-1)$ $x y$	$\begin{aligned} 3 y & =-4 x+9 \\ y & =-\frac{4}{3} x+3 \\ y & =\frac{3}{4} x+c \\ -1 & =-\frac{9}{4}+c \quad y=\frac{3}{4} x+\frac{5}{4} \\ c & =\frac{5}{4} \end{aligned}$	
Shown is a square based pyramid. E is directly over the centre of $A B C D$. The volume of the pyramid is $912 \mathrm{~cm}^{3}$ Find the length of $A E$. $\begin{aligned} & A C^{2}=12^{2}+12^{2} \\ & A C=12 \sqrt{2} \end{aligned}$ $20.81 \mathrm{~cm}$		$\begin{aligned} & 19^{2}+(8 \sqrt{2})^{2} \\ & 20.80865 \end{aligned}$
The equation $x^{3}-2 x^{2}+19=0$ has a root in the interval $(-3,-2)$ Use an appropriate iteration formula to find an approximate to 1 decimal place for the root of $x^{3}-2 x^{2}+19=0$ in the interval $(-3,-2)$ $\begin{gathered} x^{3}=2 x^{2}-19 \\ x=\sqrt[3]{2 x^{2}-19} \\ x_{n+1}=\sqrt[3]{2\left(x_{n}\right)^{2}-18} \end{gathered}$	$\begin{aligned} & x_{0}=-2 \\ & x_{1}=-2.223980091 \\ & x_{2}=-2.08835773 \\ & x_{3}=-2.174183353 \\ & x_{4}=-2.121313841 \\ & x_{5}=-2.154438665 \\ & x_{6}=-2.133900886 \\ & x_{7}=-2.146718196 \\ & x_{8}=-2.138751563 \\ & x_{1}=-2.143715813 \end{aligned}$	2.1
Corbettmaths 2021	$x_{0}=-2.140627311$	

25th July Higher P	5-a-day
Make f the subject of $\begin{aligned} x=\frac{2 f-3}{f-1} & x(f-1)=2 f-3 \\ f x-x & =2 f-3 \\ & f x-2 f=x-3 \end{aligned}$	$\begin{aligned} & f(x-2)=x-3 \\ & f=\frac{x-3}{x-2} \end{aligned}$ Corbettm α ths
Sketch $y=\frac{1}{x}$	Sketch $y=4^{x}$
The histogram shows the speeds of some cars while they travelled along a road. 156 cars were travelling less than 10 mph . Estimate how many cars were travelling at a speed greater than 25 mph . $\begin{aligned} & 110+20=130 \text { squares } \\ & 156 \div 130=1 \cdot 2 \text { cass per square. } \\ & 210+260=470 \\ & 470 \times 1.2=564 \text { cars } \end{aligned}$	

26th July Higher Plus 5-a-day	
Make x the subject of $y=\sqrt[3]{x^{5}}$ $\begin{aligned} & y^{3}=x^{5} \\ & x=\sqrt[5]{y^{3}} \end{aligned}$	Corbettm α ths
Simplify $\begin{aligned} & \sqrt{48}+\sqrt{300} \\ & 4 \sqrt{3}+10 \sqrt{3}=14 \sqrt{3} \end{aligned}$	
The curve $y=x^{2}-3 x-4$ is reflected in the x-axis. Find the equation of the new curve.	$y=-x^{2}+3 x+4$
Solve the simultaneous equations $\begin{array}{r} 2 x=6-y \quad y \geqslant 6-2 x \\ x^{2}+y^{2}=8 \quad x^{2}+(6-2 x)^{2}=8 \\ x^{2}+36-24 x+4 x^{2}=8 \\ 5 x^{2}-24 x+28=0 \end{array}$	$\begin{array}{ll} (5 x-14)(x-2)=0 \\ x=\frac{14}{5} & x=2 \\ y=\frac{2}{5} & y=2 \end{array}$
The nth term of a sequence is $n^{2}-4 n+5$ By using completing the square, show that every term is positive.	$\begin{aligned} & (n-2)^{2}-4+5 \\ & (n-2)^{2}+1 \\ & (n-2)^{2} \geqslant 0 \\ & \therefore(n-2)^{2}+1 \geqslant 0 \end{aligned}$

27th July Higher Plus 5-a-day	
The square of w is 6 Write down the value of w^{3} $\begin{aligned} & w^{2}=6 \\ & w= \pm \sqrt{6} \end{aligned}$	$\omega^{3}=6 \sqrt{6} \text { or } \quad-6 \sqrt{6}$
	Find x $\begin{aligned} & x^{2}=(2 \sqrt{3})^{2}+(5 \sqrt{2})^{2} \\ & x^{2}=62 \\ & x=\sqrt{62} \mathrm{~cm} \end{aligned}$
Scott has drawn $y=x^{2}-4 x-8$ and $y=3 x+6$ Find the quadratic equation whose solutions are the x-coordinates of the points of intersection of $y=3 x+6$ and $y=x^{2}-4 x-8$	$\begin{aligned} & x^{2}-4 x-8=3 x+6 \\ & x^{2}-7 x-14=0 \end{aligned}$
Solve $\begin{aligned} & \frac{11}{(x-1)(x+4)}+\frac{5}{x-1}=1 \\ & \frac{11}{(x-1)(x+4)}+\frac{5(x+4)}{(x-1)(x+4)}=1 \end{aligned}$	$\begin{aligned} & 5 x+31=(x-1)(x+4) \\ & 5 x+31=x^{2}+3 x-4 \\ & 0=x^{2}-2 x-35 \\ & (x-7)(x+5)=0 \\ & x=7 \text { or } x=-5 \end{aligned}$
A triangle has side lengths of 9 cm , 10 cm and 5 cm . Find the size of the largest angle.	$\cos A=\frac{5^{2}+9^{2}-10^{2}}{2 \times 5 \times 9}$

29th July Higher Plus 5-a-day	
Expand and simplify $\begin{aligned} & (2 x-1)(2 x-3)(x+5) \\ & \left(4 x^{2}-6 x-2 x+3\right)(x+5) \\ & \left(4 x^{2}-8 x+3\right)(x+5) \end{aligned}$	Corbettm α ths $\begin{aligned} & 4 x^{3}-8 x^{2}+3 x+20 x^{2}-40 x+15 \\ & 4 x^{3}+12 x^{2}-37 x+15 \end{aligned}$
Point A has coordinates $(9,7)$ Point B has coordinates $(14,-8)$ $(11.5,-0.5)$ Find the equation of the line perpendicular to $A B$, that passes through the midpoint of $A B$.	grudicat of $A B=-3$ $\begin{aligned} y & =\frac{1}{3} x+c \\ -0.5 & =\frac{23}{6}+c \\ c & =-\frac{13}{3} \quad y=\frac{1}{3} x-\frac{13}{3} \end{aligned}$
A group of scientists want to estimate the number of eels in a lake. They catch and ring 400 eels. They return the 400 eels to the lake. They then catch 700 eels. Of these, 16 are ringed.	Estimate the number of eels in the lake. $\begin{aligned} \frac{400}{N} & =\frac{16}{700} \\ 280000 & =16 N \\ N & =17500 \end{aligned}$
There are only yellow and blue counters in a box. A counter is to be taken at random from the box. The probability that the counter is blue is $\frac{2}{5}$ The counter is returned to the box. 4 more yellow counters and 1 blue counter is added to the box. The probability of a yellow counter is now $\frac{8}{13}$	Find the number of yellow counters and blue counters that were in the bag originally. $M=$ yellow $n=b l u e$ totl $=m+n$ $\begin{array}{lc} \frac{n}{m+n}=\frac{2}{5} & \frac{m+4}{m+n+5}=\frac{8}{13} \\ 5 n=2 m+2 n & 13 m+5 z=8 m+8 n \\ 3 n=2 m & 5 m+12=8 n \\ 2.5(2 m)+12=8 n \\ \text { blue }=24 & \begin{array}{c} 2.5(3 n)+12=8 n \\ \text { yellac }=36 \end{array} \\ \begin{array}{c} 7.5 n+12=8 n \\ 0.5 n=12 \\ n=24 \end{array} \end{array}$

30th July Higher Plus 5-a-day	
$\begin{aligned} & W=\frac{a^{3}}{4 c} \quad \operatorname{mux} a \\ & a=15.4 \text { correct to } 15.4 \text { decimal place } \\ & c=20 \text { correct to } 2 \text { significant figures. } \\ & 19.5 \end{aligned}$ Find the upper bound for W	Corbettm α ths $\begin{aligned} W & =\frac{15.45^{3}}{4 \times 19.5} \\ & =47.28145 \ldots \end{aligned}$
Write as a single fraction $\begin{aligned} & \frac{1-x}{x+7}-\frac{4}{x-2} \\ & \frac{-x^{2}-x-30}{(x+7)(x-2)} \end{aligned}$	$\begin{aligned} & \frac{(1-x)(x-2)-4(x+7)}{(x+7)(x-2)} \\ & \frac{x-2-x^{2}+2 x-4 x-28}{(x+7)(x-2)} \\ & \frac{-x^{2}-x-30}{(x+7)(x-2)} \end{aligned}$
Given $x^{2}:(10 x+48)=1: 3$ Find the possible values of x $\begin{aligned} & 3 x^{2}=10 x+48 \\ & 3 x^{2}-10 x-48=0 \end{aligned}$	$\begin{aligned} & (3 x+8)(x-6)=0 \\ & x=-\frac{8}{3} \quad \text { or } x=6 \end{aligned}$
Shown is the graph of $y=x^{3}$ and of graph C. Write down the equation of Graph C $y=(x+4)^{3}$	
$\left(3,-\frac{y}{4}\right)$ is a point on the graph with equation $y=(x+7)^{2}+a$ $-4=100+a$ Find the coordinates of the turning point. $(-7,-104)$	$a=-104$

A cylinder has a height of 18 cm and volume of $1715 \mathrm{~cm}^{3}$.
Work out the surface area of the cylinder.

Area of circle $=\frac{1715}{18}$
$r=5.50707350 \mathrm{~cm} \quad$ Corbettmoths

