Workout

Question 1:
(a) $314.16 \mathrm{~cm}^{2}$
(b) $2463.01 \mathrm{~cm}^{2}$
(c) $113.10 \mathrm{~cm}^{2}$
(d) $21.24 \mathrm{~cm}^{2}$
(e) $2290.22 \mathrm{~cm}^{2}$
(f) $2.54 \mathrm{~mm}^{2}$

Question 2:
(a) $196 \pi \mathrm{~cm}^{2}$
(b) $64 \pi \mathrm{~cm}^{2}$
(c) $4.84 \pi \mathrm{~m}^{2}$

Question 3:
(a) $12.6 \mathrm{~cm}^{2}$
(b) $16300 \mathrm{~mm}^{2}$
(c) $2.01 \mathrm{~m}^{2}$
(d) 13.5 square inches

Question 4:
(a) 1.99 cm
(b) 8.65 cm
(c) 39.09 cm

Question 5:
(a) 2 cm
(b) 5 cm
(c) 60 cm

Apply

Question 1: $190.852 \mathrm{~cm}^{2}$
Question 2: 3 cm radius - $\mathrm{SA}=113.1 \mathrm{~cm}^{2}$ and 6 cm radius $-\mathrm{SA}=452.4 \mathrm{~cm}^{2}$, therefore 4 times larger

Question 3: $r=\sqrt{ }(A / 4 \mathrm{pi})$
Question 4: Peter is incorrect
Approach 1: SA of Cube: $6 x^{2}$ and SA sphere is $4 \pi x^{2}$.
4π is approx 12.566 , which is more than twice 6.
Approach 2: let $x=10 \mathrm{~cm}$ (for example)
Sphere $1256.6 \mathrm{~cm}^{2}$ and cube $600 \mathrm{~cm}^{2}$
So the surface area of the sphere is more than twice the cube's
Question 5
$4 \pi x^{2}=2 \pi x^{2}+2 \pi x h$
$2 \pi x^{2}=2 \pi x h$
$x^{2}=x h$
$x=h($ since $x \neq 0)$

