Name:

GCSE Maths Practice Paper CCEA Unit M4 Set A Calculator Paper

Equipment

1. A black ink ball-point pen
2. A pencil.
3. An eraser.
4. A ruler.
5. A pair of compasses.
6. A protractor.
7. A calculator

Guidance

1. Read each question carefully.
2. Don't spend too long on one question.
3. Attempt every question.
4. Check your answers seem right.
5. Always show your workings

Information

1. Time: 2 hours
2. The maximum mark for this paper is 100.
3. The marks for questions are shown in brackets
4. You may use tracing paper.

Question	Mark	Available
1		6
2		2
3		4
4		5
5		5
6		6
7		6
8		5
9		2
10		3
11		4
12		6
13		3
14		2
15		3
16		3
17		7
18		5
19		4
20		6
21		5
22		8
23		0
24		0
25		0
Total		100

1. Nathan delivers pizzas in Dungannon.

The table below shows information about his delivery times.

Delivery Time	Frequency	x	f_{x}
$0<t \leq 10$	3	5	15
$10<t \leq 20$	10	15	150
$20<t \leq 30$	14	25	350
$30<t \leq 40$	19	35	665
$40<t \leq 50$	4	45	$+\frac{180}{1360}$

(a) Calculate an estimate for the mean delivery time

$$
1360 \div 50
$$

If Nathan takes longer than 40 minutes to deliver the pizza, the customer receives a free garlic bread.
(b) What percentage of his deliveries receive a free garlic bread?

2. Expand and simplify $6(3 x+2)-2(5 x-7)$

$$
18 x+12-10 x+14
$$

3. (a) Write 675 as a product of prime factors.

Express your answer in index form.

$$
\begin{aligned}
675 & =3 \times 3 \times 3 \times 5 \times 5 \\
& =3^{3} \times 5^{2}
\end{aligned}
$$

(b) Hence find the least number by which 675 would need to be multiplied by to give a cube number.

4.

Both rectangles have the same perimeter.
Find the area of rectangle B.

$$
\begin{aligned}
& 6+15+6+15=42 \mathrm{~cm} \\
& 10 x+2=42 \\
& 10 x=40 \\
& x=4 \\
& 4 \times 17
\end{aligned}
$$

5. Here is a right angle triangle.

Calculate the area of the triangle.

$$
\begin{gathered}
7^{2}+b^{2}=25^{2} \\
49+b^{2}=625 \\
b^{2}=576 \\
b=24
\end{gathered}
$$

$$
\begin{aligned}
\text { Area } & =1 / 2 b h \\
& =\frac{1}{2} \times 24 \times 7
\end{aligned}
$$

6. (a) The value of a painting rises from $£ 120,000$ to $£ 192,000$.

Work out the percentage increase in the value of the painting.

(b) Parker bought a house.

In the first year the value of the house decreased by 10%.
In the second year the value of the house increased by 10\%.
Is the house worth more, less, or the same as what Parker paid for it? Show your working out.

$$
100 \times 0.9 \times 1.1=99
$$

1% less
7. Shown below is a solid hemisphere with a radius of 8 cm .

(a) Find the volume of the hemisphere

$$
\begin{aligned}
\text { Volume of a sphere } & =\frac{4}{3} \pi r^{3} \\
= & \frac{4}{3} \times \pi \times 8^{3} \\
= & 2144.660585 \\
2144.660585 \div 2 & \\
& \\
& 1072.33 \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{~cm}^{3}
\end{aligned}
$$

(b) Find the surface area of the hemisphere

$$
\begin{aligned}
& \text { SA of Sphere }=4 \pi r^{2} \\
& \therefore \\
& \text { SA of hemiphere }=2 \pi r^{2}+\pi r^{2} \\
&=2 \pi \times 8^{2}+\pi \times 8^{2}
\end{aligned}
$$

8. Here is a right angled triangle.

Work out the length of the side labelled y.

$$
\begin{gather*}
x+(x-10)+90=180 \\
2 x+80=180 \\
2 x=100 \\
x=50 \\
\cos 50^{\circ}=\frac{8}{y} \\
y=\frac{8}{\cos 50^{\circ}} \tag{5}
\end{gather*}
$$

$$
12 \cdot 45
$$

9. Solve the equation $y^{2}+y-42=0$

$$
\begin{gather*}
(y+7)(y-6)=0 \\
y=-7 \text { or } y=6 \tag{2}
\end{gather*}
$$

10. Find the equation of the line that is parallel to $2 y+4 x=9$ and passes through the point $(0,3)$

$$
\begin{gathered}
2 y=-4 x+9 \\
y=-2 x+4 \cdot 5 \\
M=-2
\end{gathered}
$$

$$
\begin{equation*}
y=-2 x+3 \tag{3}
\end{equation*}
$$

11. Solve $\frac{x-3}{4}+\frac{x+1}{2}=\frac{11}{16}$

$$
\begin{gathered}
4(x-3)+8(x+1)=11 \\
4 x-12+8 x+8=11 \\
12 x=15 \\
x=1.25
\end{gathered}
$$

12. A university surveyed 60 mathematics graduates on their starting salary. The cumulative frequency graph shows some information about the salaries.

(a) Use the graph to find an estimate for the median salary.
£ 30000

The 60 mathematics graduates had a minimum salary of $£ 16,000$ and a maximum salary of $£ 48,000$.
(b) Use this information and the cumulative frequency curve to draw a box plot for the 60 mathematics graduates.

Mathematics Graduates

Salary

The university also surveyed 60 archaeology graduates.
The box plot below shows information about their salaries.

Archaeology Graduates

Salary

(c) Compare the distribution of the salaries of the mathematics graduates with the distribution of the salaries of the archaeology graduates.
................salaries for..... the mathematics graduates are higher. as their median is 530000ompareen to a me dim. of 19000 . Both distributions have a spreabh) - $Q R$ of \&10000, so they have a similanes spreed.
13. In 2013, Evan bought a car.

In 2019, Evan sold the car to Grace.
Evan made a loss of 25%

In 2021, Grace sold the car for $£ 15225$
Grace made a profit of 45%
Work out how much Evan bought the car for in 2013.

$$
\begin{aligned}
& 15225 \div 1.45=f(10500 \\
& 10500 \div 0.75=f 14000
\end{aligned}
$$

14. The table below shows information about the vehicles sold by a dealership.

Car	Van	Motorbike	Caravan
5112	1048	2948	750

The manager takes a sample of 150 customers, stratified by type of vehicle sold.
Calculate the number of customers who bought motorbikes that should be included in the sample.
$\frac{2948}{9858} \times 150=44.856969 \ldots$

45 (or 44)
15. $\quad w=a T$
$a=15$ correct to 2 significant figures $\quad \operatorname{Min} a: 14.5$
$w=700$ correct to 2 significant figures max $w: 706$
Calculate the upper bound for T

$$
\begin{aligned}
& T=\frac{\omega}{u} \\
& M_{u x} T=\frac{M_{u x} \omega}{M_{\text {in }} a}
\end{aligned}
$$

16. The diagram below shows a sector.

Find the perimeter of the sector.

$$
\begin{aligned}
& \frac{150}{360} \times \pi \times 38=49.741 \\
& 49.741 \ldots+19+19=
\end{aligned}
$$

17. The surface area of this cuboid is $3600 \mathrm{~cm}^{2}$

(a) Show $x^{2}+10 x-600=0$

$$
\begin{aligned}
& x \times x=x^{2} \\
& x(x+15)=x^{2}+15 x
\end{aligned}
$$

$$
2 x^{2}+4\left(x^{2}+15 x\right)=3600
$$

$$
\begin{align*}
6 x^{2}+60 x-3600 & =0 \\
x^{2}+10 x-600 & =0 \tag{4}
\end{align*}
$$

(b) Find the volume of the cuboid.

$$
\begin{aligned}
& (x+30)(x-20)=0 \\
& x=f 30 \text { or } x=20 \\
& 20 \times 20 \times 35
\end{aligned}
$$

18. The histograms shows information about the time taken by 140 students to complete a puzzle.

(a) Complete this frequency table.

* | Time, t seconds | Frequency |
| :---: | :---: |
| $0<t \leq 40$ | 4 |
| $40<t \leq 60$ | 48 |
| $60<t \leq 70$ | 33 |
| $70<t \leq 80$ | 39 |
| $80<t \leq 120$ | 16 |

(b) Calculate an estimate of the median.

$$
\begin{align*}
& 70^{\text {th }} \tag{2}\\
& 60+\frac{18}{33} \times 10
\end{align*}
$$

19. A straight line passes through the point $A(1,4)$ and $B(5,16)$

Find the equation of the line perpendicular to $A B$ that passes through C.

$$
\begin{aligned}
& \text { gutalat of } A B: \frac{6-0}{12-3}=\frac{6}{9}=\frac{2}{3} \\
& \text { guatat at papaticior line: }=-\frac{3}{2} \\
& C \begin{array}{c}
x y \\
(1,5)
\end{array} \\
& y=-\frac{3}{2} x+c \\
& 5=-\frac{3}{2}+c \\
& c=6.5 \\
& \text { (4) } \\
& y=-\frac{3}{2} x+\frac{13}{2}
\end{aligned}
$$

20. Solve

$$
\frac{2}{2 x-3}-\frac{3}{x+4}=2
$$

Give your solutions to ${ }^{4}$ significant figures

$$
\begin{aligned}
& \frac{2(x+4)-3(2 x-3)}{(2 x-3)(x+4)}=2 \\
& 2 x+8-6 x+9=2(2 x-3)(x+4) \\
& -4 x+17=2\left(2 x^{2}+8 x-3 x-12\right) \\
& -4 x+17=4 x^{2}+16 x-6 x-24 \\
& 0=4 x^{2}+14 x-41 \\
& a=4 \quad b=14 \quad c=-41 \\
& x=\frac{-14 \pm \sqrt{14^{2}-4 \times 4 \times(-41)}}{8} \\
& x=\frac{-14 \pm \sqrt{852}}{8} \\
& x=\frac{-14+\sqrt{852}}{8} \text { or } x=\frac{-14-\sqrt{852}}{8} \\
& x=1.890 \\
& x=-5.399 \\
& 1.899 \text { or }-5.399 \\
& \text { (6) }
\end{aligned}
$$

21.

The points D, E and F are points on a circle, centre O .
Angle DEF $=2 x$
Angle DOF $=5 x-72^{\circ}$
Angle EDO $=y$
Angle EFO is 14° smaller than angle EDO

Work out the value of y

$$
\begin{gather*}
9 x-72=360 \\
9 x=432 \\
x=48 \\
96+168=264 \\
360-264=96 \\
2 y-14=96 \\
2 y=110 \\
y=55 \tag{5}
\end{gather*}
$$

$$
5 \times 48-72=168
$$

$$
y=55
$$

22. (a) $\left(a x^{b}\right)^{3}=27 x^{12}$ where a and b are positive integers.

Work out a and b

$$
\begin{aligned}
& \sqrt[3]{27}=3 \\
& 12 \div 3=4
\end{aligned}
$$

$$
\begin{align*}
& a=\ldots \ldots \ldots \\
& b=\ldots \ldots .4 \tag{2}
\end{align*}
$$

(b) Factorise $10 x^{2}-91 x y+9 y^{2}$

$$
(10 x-y)(x-9 y)
$$

$$
(10 x-y)(x-9)
$$

(c) Simplify

$$
\begin{aligned}
& \frac{x+4}{x^{4 / 3}} \times \frac{x-1}{2 x^{3}}+\frac{x+4}{x^{4}} \div \frac{4 x+16}{x} \\
& \frac{x-1}{2 x^{3}}+\frac{1}{4 x^{3}}=\frac{1}{4 x^{3}} \\
& \frac{2 x-2}{4 x^{3}}+\frac{1}{4 x^{3}}=\frac{2 x-1}{4 x^{3}}
\end{aligned}
$$

