

Name: _____

Exam Style Questions

Surds

Corbettmaths

Equipment needed: Pen

Guidance

1. Read each question carefully before you begin answering it.
2. Check your answers seem right.
3. Always show your workings

Video Tutorial

www.corbettmaths.com/contents

Videos 305, 306, 307, 308

Answers and Video Solutions

1. Evaluate the following

(a) $\sqrt{3} \times \sqrt{7}$

.....
(1)

(b) $\sqrt{24} \div \sqrt{6}$

.....
(2)

(c) $2\sqrt{3} \times 3\sqrt{5}$

.....
(2)

(d) $10\sqrt{8} \div 2\sqrt{2}$

.....
(2)

2. Simplify $(\sqrt{3})^2$

.....
(1)

3. Work out the exact value of $(\sqrt{2})^4$

.....
(1)

4. (a) Express $\sqrt{75}$ in its simplest form.

.....
(1)

(b) Express $\sqrt{32}$ in its simplest form.

.....
(1)

(c) Express $\sqrt{8}$ in its simplest form.

.....
(1)

(d) Express $\sqrt{200}$ in its simplest form.

.....
(1)

5. Simplify $\sqrt{5} \times \sqrt{10}$

.....
(2)

6. Simplify fully

(a) $\sqrt{50} + \sqrt{32}$

.....
(2)

(b) $\sqrt{80} + \sqrt{20}$

.....
(2)

(c) $\sqrt{200} - \sqrt{72}$

.....
(2)

(d) $3\sqrt{12} + \sqrt{75}$

.....
.....
.....
(3)

7. Tilly has been asked to work out $\sqrt{2} + \sqrt{8}$

Tilly says the answer is $\sqrt{10}$ as $2 + 8 = 10$

Is Tilly correct?

Explain your answer.

.....
.....
.....
.....

(2)

8. Express $\sqrt{2} + \sqrt{98}$ in the form $a\sqrt{2}$ where a is an integer.

.....
.....
(2)

9. Write $\sqrt{150} + \sqrt{24}$ in the form $k\sqrt{6}$

.....
(2)

10. Shown below is a rectangle.

$5\sqrt{2}$ cm

(a) Find the perimeter of the rectangle.

.....cm
(2)

(b) Find the area of the rectangle.

.....cm²
(2)

11. Write each of these in the form $a\sqrt{3}$, where a is an integer.

(a) $\sqrt{6} \times \sqrt{8}$

.....
(2)

(b) $\sqrt{27} + \sqrt{75}$

.....
(2)

12. Rationalise the denominator of $\frac{15}{\sqrt{5}}$

.....
(2)

13. Simplify fully $\sqrt{600} + \sqrt{24}$

.....
(2)

14. (a) Rationalise the denominator of $\frac{12}{\sqrt{3}}$

.....
(2)

(b) Evaluate $\sqrt{2} \times \sqrt{32}$

.....
(2)

(c) Expand and simplify $(\sqrt{3} + \sqrt{5})^2$

.....
(2)

(d) Evaluate $(5 + \sqrt{2})(5 - \sqrt{2})$

.....
(2)

15. (a) Simplify fully $\sqrt{3}(\sqrt{27} - \sqrt{3})$

.....
(2)

(b) Given that $a = \sqrt{2}$ $b = \sqrt{15}$ $c = \sqrt{30}$

work out the value of

$$\frac{b}{ac}$$

write your answer in its simplest form

.....
(3)

16. Rationalise the denominator of

$$\frac{12}{7\sqrt{3}}$$

.....
(2)

17. Given that $a = \sqrt{3}$ and $b = \sqrt{48}$

(a) find the value of a^2

.....
(1)

(b) show that $(a + b)^2 = 75$

.....
(3)

18. Expand and simplify $(3 + \sqrt{8})(4 + \sqrt{2})$

Give your answer in the form $a + b\sqrt{2}$ where a and b are integers.

.....
(4)

19. Simplify $5\sqrt{8} + \sqrt{18}$

.....
(2)

20. Rationalise the denominator of

$$\frac{8}{\sqrt{2}}$$

.....
(2)

21. Expand and simplify $(\sqrt{7} - \sqrt{3})^2$

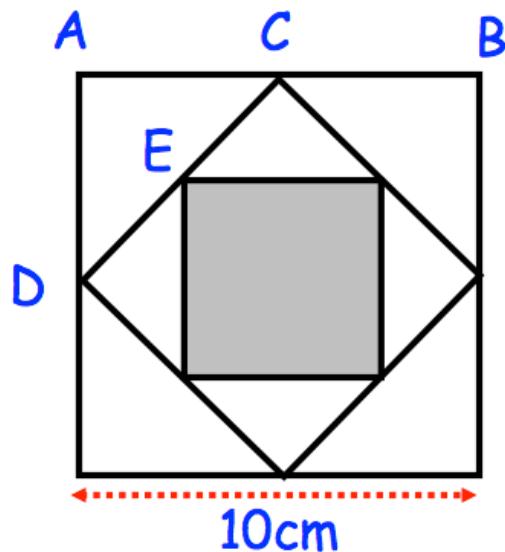
.....
(2)

22. Write $\sqrt{11} + \sqrt{99}$ in the form $a\sqrt{b}$ where a and b are integers.

.....
(2)

23. Expand $(8 - \sqrt{3})^2$ giving your answer in form $a + b\sqrt{3}$

.....
(2)


24. Show that $(\sqrt{2} + 3\sqrt{8})^2 = 98$

.....
(3)

25. The midpoints of the sides of a square of side 10cm are joined to form another square.

 This process is then repeated to create the shaded square.

Find the area of the shaded square.

.....cm²
(4)

26. Simplify $\sqrt{80} - \frac{10}{\sqrt{5}}$

.....
(3)

27. Given that

$$\frac{10 - \sqrt{32}}{\sqrt{2}} = a + b\sqrt{2}$$

where a and b are integer.

Find the values of a and b.

a =

b =
(4)

28. A shed has dimensions, in metres, of

$$\text{Height} = \sqrt{5} \quad \text{Width} = \sqrt{6} \quad \text{Length} = \frac{9}{\sqrt{2}}$$

Find the volume of the shed.

Give your answer in the form $a\sqrt{15}$, where a is an integer.

..... m^3
(3)

29. (a) Simplify $\sqrt{2} y + \sqrt{2} y + \sqrt{2} y$

.....
(1)

(b) Simplify fully $\sqrt{2} y \times \sqrt{2} y \times \sqrt{2} y$

.....
(2)

30. $c = \frac{9}{2\sqrt{y}}$ $d = \frac{4}{\sqrt{y}}$

Work out cd

.....
(3)

31. $y = \frac{4\sqrt{10}}{5}$

Work out the value of y^3

.....
(3)

32. $(3 + c\sqrt{5})^2 = d + 24\sqrt{5}$

Work out the values of c and d.

c =

d =
(4)

33. $\sqrt{300} - 2\sqrt{x} = 4\sqrt{3}$

Work out the value of x

.....
(3)

34. Given that

$$\sqrt{1\frac{2}{25}} + \sqrt{12} = \frac{a\sqrt{3}}{b}$$

Work out the values of a and b

.....
(3)

35. Write

$$\frac{4}{\sqrt{5}} - \sqrt{2\frac{2}{9}}$$
 in the form $a\sqrt{5}$

.....
(4)

36. Write $\frac{6}{\frac{1}{\sqrt{2}} + \sqrt{2}}$ in the form $a\sqrt{2}$

.....
(4)

37. Show that $\frac{16}{\sqrt{11} - 3}$ can be written in the form $a + b\sqrt{11}$

.....
(4)

38. Show that $\frac{6}{2 - \sqrt{3}}$ can be written in the form $a + b\sqrt{3}$

.....
(4)

39. Write $\frac{4\sqrt{2}}{3 + \sqrt{2}} + \frac{6}{\sqrt{2}}$ in the form $\frac{a\sqrt{2} - b}{c}$

.....
(4)

40. Write $\frac{\sqrt{2} - 2}{3\sqrt{2} + 4}$ in the form $a + b\sqrt{2}$, where a and b are integers.

.....
(4)